×

Quenched invariance principles for random walks on percolation clusters. (English) Zbl 1131.82012

Summary: We consider a supercritical Bernoulli percolation model in \(\mathbb Z^{d}\), \(d\geq 2\), and study the simple symmetric random walk on the infinite percolation cluster. The aim of this paper is to prove the almost sure (quenched) invariance principle for this random walk.

MSC:

82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
60F17 Functional limit theorems; invariance principles
60G50 Sums of independent random variables; random walks
60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B43 Percolation
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Barlow, M.T. 2004 Random walks on supercritical percolation clusters. <i>Ann. Probab.</i> <b>32</b>, 3024–3084, (doi:10.1214/009117904000000748). · Zbl 1067.60101
[2] Berger, N. & Biskup, M. 2007 Quenched invariance principle for simple random walk on percolation cluster. <i>Probab. Theory Rel. Fields</i> <b>137</b>, 83–120, (doi:10.1007/s00440-006-0498-z). · Zbl 1107.60066
[3] de Gennes, P.G. 1976 La percolation: un concept unificateur. <i>La Recherche</i> <b>7</b>, 919–927.
[4] De Masi, A., Ferrari, P., Goldstein, S. & Wick, W.D. 1989 An invariance principle for reversible Markov processes. Applications to random motions in random environments. <i>J. Stat. Phys.</i> <b>55</b>, 787–855, (doi:10.1007/BF01041608). · Zbl 0713.60041
[5] Ethier, S.N. & Kurtz, T.G. 1986 Markov processes. New York, NY: Wiley. · Zbl 0592.60049
[6] Grimmett, G. 1999 Percolation. 2nd edn. Berlin, Germany: Springer.
[7] Grimmett, G. & Marstrand, J. 1990 The supercritical phase of percolation is well behaved. <i>Proc. R. Soc. A</i> <b>4306</b>, 439–457, (doi:10.1098/rspa.1990.0100). · Zbl 0711.60100
[8] Grimmett, G., Kesten, H. & Zhang, Y. 1993 Random walk on the infinite cluster of the percolation model. <i>Probab. Theory Rel. Fields</i> <b>96</b>, 33–44, (doi:10.1007/BF01195881). · Zbl 0791.60095
[9] Helland, I. 1982 Central limit theorems for martingales with discrete or continuous time. <i>Scand. J. Stat.</i> <b>9</b>, 79–94. · Zbl 0486.60023
[10] Jikov, V.V. & Piatnitski, A.L. 2006 Homogenization of random singular structures and random measures. <i>Izv. Math.</i> <b>70</b>, 19–67.
[11] Jikov, V.V., Kozlov, S.M. & Oleinik, O.A. 1994 Homogenization of differential operators and integral functionals. Berlin, Germany: Springer.
[12] Kesten, H. 1982 Percolation theory for mathematicians. <i>Progress in probability and statistics</i>, vol. 2. Boston, MA: Birkhauser.
[13] Kozlov, S.M. 1985 The method of averaging and walks in inhomogeneous environments. <i>Russ. Math. Surv.</i> <b>40</b>, 73–145, (doi:10.1070/RM1985v040n02ABEH003558). · Zbl 0615.60063
[14] Krengel, U. 1985 Ergodic theorems. Berlin, Germany: Walter de Gruyter. · Zbl 0575.28009
[15] Mathieu, P. & Remy, E. 2004 Isoperimetry and heat kernel decay on percolations clusters. <i>Ann. Probab.</i> <b>32</b>, 100–128, (doi:10.1214/aop/1078415830). · Zbl 1078.60085
[16] Sidoravicius, V. & Sznitman, A.-S. 2004 Quenched invariance principles for walks on clusters of percolation or among random conductances. <i>Prob. Theory Rel. Fields</i> <b>129</b>, 219–244, (doi:10.1007/s00440-004-0336-0). · Zbl 1070.60090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.