×

Oscillation and global attractivity in a delay periodic host macroparasite model. (English) Zbl 1131.92039

Summary: We consider a nonlinear delay host macroparasite model with periodic coefficients (with common period \(\omega \)). By means of a continuation theorem in coincidence degree theory, we establish a sufficient condition for the existence of a positive periodic solution \(\overline M (t)\) with strictly positive components. Also, we establish some sufficient conditions for oscillation of all positive solutions about the positive periodic solution \(\overline M (t)\) and establish a sufficient condition for the global attractivity of \(\overline M(t)\).

MSC:

92C60 Medical epidemiology
34K13 Periodic solutions to functional-differential equations
34K60 Qualitative investigation and simulation of models involving functional-differential equations
46N60 Applications of functional analysis in biology and other sciences
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Chao, J., On the oscillation of linear differential equations with deviating arguments, Math. Practice Theory, 1, 32-40 (1991) · Zbl 1493.34178
[2] Elabbasy, E. M.; Saif, K.; Saker, S. H., Oscillation in host macroparasite model with delay time, Far East J. Appl. Math., 4, 119-142 (2000) · Zbl 0992.34047
[3] Erbe, L. H.; Zhang, B. G., Oscillation for first order linear differential equations with deviating arguments, Differen. Integral Equat., 1, 305-314 (1988) · Zbl 0723.34055
[4] Gaines, R. E.; Mawhin, J. L., Coincidence Degree and Nonlinear Differential Equations (1977), Springer: Springer Berlin · Zbl 0326.34021
[5] Gopalsamy, K.; Kulenovic, M. R.S.; Ladas, G., Environmental periodicity and time delays in a ‘Food Limited’ population model, J. Math. Anal. Appl., 147, 545-555 (1990) · Zbl 0701.92021
[6] Gopalsamy, K.; Trofimchuk, S. I., Almost periodic solutions of Lasota-Wazewska type delay differential equations, J. Math. Anal. Appl., 237, 106-127 (1999) · Zbl 0936.34058
[7] Györi, I.; Ladas, G., Oscillation Theory of Delay Differential Equations with Applications (1991), Clarendon Press: Clarendon Press Oxford · Zbl 0780.34048
[8] Hairston, N. G., On the mathematical analysis of schistosome population, Bull. World Health Org., 33, 45-62 (1965)
[9] Hui, F.; Li, J., On the existence of periodic solutions of a neutral delay model of single-species population growth, J. Math. Anal. Appl., 256, 8-17 (2001) · Zbl 0995.34073
[11] Kuang, Y., Delay Differential Equations with Applications in Population Dynamics (1993), Academic Press: Academic Press New York · Zbl 0777.34002
[12] Kulenovic, M. R.S.; Ladas, G., Linearized oscillation in population dynamics, Bull. Math. Biol., 44, 615-627 (1987) · Zbl 0634.92013
[13] Kulenovic, M. R.S.; Ladas, G.; Sficas, Y. S., Global attractivity in population dynamics, Comput. Math. Appl., 18, 925-928 (1989) · Zbl 0686.92019
[14] Ladde, G. S.; Lakshmikantham, V.; Zhang, B. Z., Oscillation Theory of Differential Equations with Deviating Arguments (1987), Marcel Dekker: Marcel Dekker New York · Zbl 0832.34071
[15] Li, B., Oscillation of delay differential equations with variable coefficients, J. Math. Anal. Appl., 192, 217-234 (1995)
[16] Leyton, M. K., Stochastic models in population of hilmenthic parasites in the definitive host. II Sexual mating functions, Math. Biosci., 39, 413-419 (1968) · Zbl 0181.47906
[17] Macdonald, G., The dynamics of hilmenth infectious with special references to schistosomes, Trans. R. Soc. Trop. Med. Hyg., 59, 489-506 (1965)
[18] Macdonald, N., Biological Delay Systems: Linear Stability Theory. Biological Delay Systems: Linear Stability Theory, Cambridge Studies in Mathematical Biology (1989), Cambridge University Press · Zbl 0669.92001
[19] May, R.; Anderson, R. M., Infectious Diseases of Humans: Dynamics and Control (1995), Oxford Science Publications
[20] Nicholson, A. J., The balance of animal population, J. Animal Ecol., 2, 132-178 (1993)
[21] Saker, S. H.; Agarwal, S., Oscillation and global attractivity in a nonlinear delay periodic model of respiratory dynamics, Comput. Math. Appl., 44, 5-6 (2002), 623-632 · Zbl 1041.34073
[22] Saker, S. H.; Agarwal, S., Oscillation and global attractivity in nonlinear delay periodic model of population dynamics, Appl. Anal., 81, 787-799 (2002) · Zbl 1041.34061
[23] Saker, S. H.; Agarwal, S., Oscillation and global attractivity in a periodic Nicholson’s Blowflies model, Math. Comput. Model., 35, 719-731 (2002) · Zbl 1012.34067
[24] Saker, S. H.; Agarwal, S., Oscillation and global attractivity of a periodic survival red blood cells model, Dyn. Contin., Discr. Impul. Syst. Ser. A: Math. Anal., 12, 429-440 (2005) · Zbl 1078.34062
[25] Shen, J.; Tang, X., New oscillation criteria for linear delay differential equations, Comput. Math. Appl., 36, 53-61 (1998) · Zbl 0961.34056
[26] Tallis, G. M.; Leyton, M. K., A schistosome approach to the study of parasite populations, J. Theor. Biol., 13, 160-251 (1966)
[27] Yan, J.; Feng, Q., Global attractivity and oscillation in a nonlinear delay equation, Nonlinear Anal., 43, 101-108 (2001) · Zbl 0987.34065
[28] Yu, J. S.; Wang, Z. C., Some further results on oscillation of neutral differential equations, Bull. Aust. Math. Soc., 46, 149-157 (1992)
[29] Yu, J. S.; Wang, Z. C.; Zhang, B. G.; Qian, X. Z., Oscillations of differential equations with deviating arguments, Pan Am. Math. J., 2, 59-72 (1992) · Zbl 0845.34082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.