×

zbMATH — the first resource for mathematics

Global stabilization for linear continuous time-varying systems. (English) Zbl 1131.93044
Summary: Stabilization problem via static output feedback controls for linear time-varying systems is investigated. Based on the Lyapunov function techniques, we show that for linear time-varying systems the global null-controllability guarantees the output feedback stabilization. The verifiable stabilizability conditions and output feedback control design are stated. The result can be applicable to the output feedback stabilizability of a class of nonlinear time-varying systems. Numerical examples illustrated the conditions are given.

MSC:
93D15 Stabilization of systems by feedback
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Benabdallah, A.; Hammami, M.A., On the output feedback stability for nonlinear uncertain control systems, Int. J. control, 74, 547-551, (2001) · Zbl 1039.93052
[2] Boyd, S.; Ghaoui, L.El.; Feron, E.; Balakrishnan, V., Linear matrix inequalities in systems and control theory, SIAM stud. appl. math., SIAM PA, 15, (1994) · Zbl 0816.93004
[3] Cao, Y.Y.; Lam, J.; Sun, Y.X., Static output feedback stabilization: an LMI approach, Automatica, 34, 1641-1645, (1998) · Zbl 0937.93039
[4] Callier, F.; Desoer, C.A., Linear system theory, (1992), Springer-Verlag Hong Kong
[5] M.S. Chen, Control of linear time-varying systems by the gradient algorithm, in: Proceedings of the 36th Conference on Decision and Control, San Diego, December 1977, pp. 4549-4553.
[6] Chen, M.S.; Chen, Y.Z., Static output feedback control for periodically time-varying systems, IEEE trans. auto. control, 44, 218-221, (1999) · Zbl 1056.93543
[7] Gibson, J.S., Riccati equations and numerical approximations, SIAM J. control optim., 21, 95-139, (1983) · Zbl 0557.49017
[8] Ikeda, M.; Maeda, H.; Komada, S., Stabilization of linear systems, SIAM J. control, 10, 716-729, (1972) · Zbl 0244.93049
[9] Kalman, R., Contribution to theory of optimal control, Bol. soc. mat. mexicana, 2, 102-119, (1960)
[10] Klamka, J., Controllability of dynamical systems, (1991), Kluwer Academic Publisher Dordrecht · Zbl 0732.93008
[11] Laub, A.J., Schur techniques for solving Riccati equations, IEEE trans. autom. control, 24, 913-921, (1979) · Zbl 0424.65013
[12] Marshall, A.W.; Olkin, L., Inequalities: theory of majorizations and its applications, (1979), Academic Press NY
[13] Park, J.H.; Kwon, O., Robust stabilization for neutral delay-differential systems with parametric uncertainties and applications, Appl. math. comput., 162, 1167-1182, (2005) · Zbl 1073.93051
[14] Phat, V.N., Stabilization of linear continuous time-varying systems with state delays in Hilbert spaces, Electron. J. diff. equat., 2001, 67, 1-13, (2001) · Zbl 1020.93017
[15] Phat, V.N.; Jiang, J., Feedback stabilization of nonlinear discrete-time systems via a digital communication channel, Int. J. math. math. sci., 1, 43-56, (2005) · Zbl 1127.93052
[16] Sinha, S.C.; Joseph, P., Control of general dynamic systems with periodic parameters via Lyapunov-Floquet transformation, ASME J. dyn. syst., 116, 650-658, (1994) · Zbl 0843.93032
[17] Savkin, A.V., Robust output feedback constrained controllability of uncertain linear time-varying systems, J. math. anal. appl., 215, 376-387, (1997) · Zbl 0927.93018
[18] Tornambe, A.; Valigi, P., Asymptotic stabilization of a class of continuous-time linear periodic systems, Syst. control lett., 28, 189-196, (1996) · Zbl 0875.93475
[19] Vidyasagar, M., Nonlinear systems analysis, (1993), Prentice-Hall Englewood Cliffs · Zbl 0900.93132
[20] Zhou, K.; Khargonakar, P.P., Robust stabilization of linear systems with norm bounded time-varying uncertainty, Syst. control lett., 10, 17-20, (1988) · Zbl 0634.93066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.