zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Virtual leader approach to coordinated control of multiple mobile agents with asymmetric interactions. (English) Zbl 1131.93354
Summary: This paper considers the collective dynamics of a group of mobile autonomous agents moving in Euclidean space with a virtual leader. We introduce a set of coordination control laws that enable the group to generate the desired stable flocking motion. The control laws are a combination of attractive/repulsive and alignment forces, and the control law acting on each agent relies on the state information of its flockmates and the external reference signal (or “virtual leader”). Using the control laws, all agent velocities asymptotically approach the desired velocity, collisions can be avoided between the agents, and the final tight formation minimizes all agent global potentials. Moreover, we show that the velocity of the center of mass either is equal to the desired velocity or exponentially converges to it. Furthermore, when the velocity damping is taken into account, we can appropriately modify the control laws to generate the same stable flocking motion. Subsequently, for the case where not all agents know the desired common velocity, we show that the desired flocking motion can still be guaranteed. Numerical simulations are worked out to illustrate our theoretical results. Additionally, we consider the effect of white noise on the collective dynamics of the group, and demonstrate numerically that the desired flocking motion can be kept for weak noise and, as the noise intensity increases, the flocking motion can be destroyed.

93C83Control problems involving computers
Full Text: DOI
[1] N.E. Leonard, E. Fiorelli, Virtual leaders, artificial potentials and coordinated control of groups, in: Proc. 40th IEEE Conf. Decision and Control, vol. 3, 2001, pp. 2968--2973
[2] Warburton, K.; Lazarus, J.: Tendency--distance models of social cohesion in animal groups. J. theor. Biol. 150, 473-488 (1991)
[3] Suzuki, I.; Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28, 1347-1363 (1999) · Zbl 0940.68145
[4] Reif, J. H.; Wang, H.: Social potential fields: a distributed behavioral control for autonomous robots. Robot. auton. Syst. 27, 171-194 (1999)
[5] Giulietti, F.; Pollini, L.; Innocenti, M.: Autonomous formation flight. IEEE control syst. Mag. 20, 34-44 (2000)
[6] Rimon, E.; Koditschek, D. E.: Exact robot navigation using artificial potential functions. IEEE trans. Robot. autom. 8, 501-518 (1992)
[7] R. Bachmayer, N.E. Leonard, Vehicle networks for gradient descent in a sampled environment, in: Proc. 41st IEEE Conf. Decision and Control, vol. 1, 2002, pp. 112--117
[8] Olfati-Saber, R.; Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE trans. Automat. control 49, 1520-1533 (2004)
[9] C.W. Reynolds, Flocks, herds, and schools: a distributed behavioral model, in: ACM SIGGRAPH ’87 Conference Proceedings, Computer Graphics 21 (1987) 25--34
[10] Vicsek, T.; Czirók, A.; Ben-Jacob, E.; Cohen, I.; Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. rev. Lett. 75, 1226-1229 (1995) · Zbl 0869.92002
[11] Czirók, A.; Vicsek, M.; Vicsek, T.: Collective motion of organisms in three dimensions. Phys. A 264, 299-304 (1999) · Zbl 0957.92001
[12] Czirók, A.; Vicsek, T.: Collective behavior of interacting self-propelled particles. Phys. A 281, 17-29 (2000) · Zbl 0986.92007
[13] Jadbabaie, A.; Lin, J.; Morse, A. S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE trans. Automat. control 48, 988-1001 (2003)
[14] Savkin, A. V.: Coordinated collective motion of groups of autonomous mobile robots: analysis of vicsek’s model. IEEE trans. Automat. control 49, 981-983 (2004)
[15] H.G. Tanner, A. Jadbabaie, G.J. Pappas, Stable flocking of mobile agents, Part I: Fixed topology; Part II: Dynamic topology, in: Proc. 42nd IEEE Conf. Decision and Control, vol. 2, 2003, pp. 2010--2015, 2016--2021
[16] H. Shi, L. Wang, T. Chu, W. Zhang, Coordination of a group of mobile autonomous agents, in: Proc. International Conference on Advances in Intelligent Systems--Theory and Applications, Luxembourg, November, 2004
[17] H. Shi, L. Wang, T. Chu, Coordination of multiple dynamic agents with asymmetric interactions, in: Proc. IEEE International Symposium on Intelligent Control, Limassol, Cyprus, 2005. pp. 1423--1428
[18] L. Wang, H. Shi, T. Chu, Flocking control of groups of mobile autonomous agents via local feedback, in: Proc. IEEE International Symposium on Intelligent Control, Limassol, Cyprus, 2005. pp. 441--446
[19] Shi, H.; Wang, L.; Chu, T.; Xu, M.: Flocking control of multiple interactive dynamical agents with switching topology via local feedback. Lecture notes in artificial intelligence 3630, 604-613 (2005)
[20] Gazi, V.; Passino, K. M.: Stability analysis of swarms. IEEE trans. Automat. control 48, 692-697 (2003)
[21] Gazi, V.; Passino, K. M.: Stability analysis of social foraging swarms. IEEE trans. Syst. man cybern. B 34, 539-557 (2004)
[22] Liu, Y.; Passino, K. M.; Polycarpou, M. M.: Stability analysis of m-dimensional asynchronous swarms with a fixed communication topology. IEEE trans. Automat. control 48, 76-95 (2003)
[23] Wang, L.; Shi, H.; Chu, T.; Zhang, W.; Zhang, L.: Aggregation of foraging swarms. Lecture notes in artificial intelligence 3339, 766-777 (2004)
[24] Chu, T.; Wang, L.; Chen, T.: Self-organized motion in anisotropic swarms. J. control theory appl. 1, 77-81 (2003)
[25] T. Chu, L. Wang, S. Mu, Collective behavior analysis of an anisotropic swarm model, in: Proc. of the 16th Int. Symp. Mathematical Theory of Networks and Systems (MTNS 2004), Paper ID: REG-345, Leuven, Belgium, July 2004, pp. 1--14
[26] T. Chu, L. Wang, T. Chen, S. Mu, Complex emergent dynamics of anisotropic swarms: convergence vs. oscillation, Chaos Solitons Fractals (2006) (in press) · Zbl 1142.34346
[27] Mu, S.; Chu, T.; Wang, L.: Coordinated collective motion in a motile particle group with a leader. Phys. A 351, 211-226 (2005)
[28] Liu, B.; Chu, T.; Wang, L.; Wang, Z.: Swarm dynamics of a group of mobile autonomous agents. Chin. phys. Lett. 22, 254-257 (2005)
[29] Shi, H.; Wang, L.; Chu, T.: Swarming behavior of multi-agent systems. J. control theory appl. 2, 313-318 (2004)
[30] Godsil, C.; Royle, G.: Algebraic graph theory. (2001) · Zbl 0968.05002
[31] Horn, R. A.; Johnson, C. R.: Matrix analysis. (1985) · Zbl 0576.15001
[32] Khalil, H. K.: Nonlinear systems. (1996) · Zbl 0842.93033