×

Minkowski’s conjecture, well-rounded lattices and topological dimension. (English) Zbl 1132.11034

One of the great problems of the geometry of numbers is the following conjecture on the product of non-homogeneous linear forms: For \(x\in \mathbb R^{n}\) let \(| x| ^{2}=x_1^{2}+\cdots +x_n^{2}\) and \(N(x)=| x_1\cdots x_n| \). Then for any lattice \(L\) in \(\mathbb R^{n}\) with determinant 1 holds
\[ \sup_{x\in\mathbb R^{n}} \inf_{y\in L} N(x-y)\leq 2^{-n}. \]
Equality holds if and only if \(L=D\mathbb Z^{n}\) where \(D\) is a diagonal matrix with positive entries and determinant 1. The conjecture has been proved for \(n=2,3,4,5\) by [M. Minkowski, Diophantische Approximation. Neudruck. Würzburg: Physica-Verlag (1961; Zbl 0103.03403)], R. Remak [Math. Z. 17, 1–34, 18, 173–200 (1923; JFM 49.0101.03)], F. J. Dyson [Ann. Math. (2) 49, 82–109 (1948; Zbl 0031.15402)] and B. F. Skubenko [Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 33, 6–36 (1973; Zbl 0352.10010)]. For general \(n\) there are estimates due to N. G. Chebotarev [Vierteljahresschr. Naturforsch. Ges. Zürich 85, Beibl. 32, 27–30 (1940; Zbl 0023.20701)] and others including E. Bombieri [Acta Math. 8, 273–281 (1963; Zbl 0123.04505)]. For large sets of lattices the conjecture has been proved by A. M. Macbeath [Proc. Glasg. Math. Assoc. 5, 86–89 (1961; Zbl 0098.26303)] and the reviewer [Acta Arith. 13, 9–27 (1967; Zbl 0153.07102)]. One line of attack is to show the following:
(i) For each lattice \(L\) in \(\mathbb R^{n}\) there is a diagonal matrix \(D\) as above such that \(DL\) has the following property: the set of vectors \(y\in L\backslash\{ o\}\) of minimum length \(| y| \) span \(\mathbb R^{n}\), i.e. \(DL\) is well rounded.
(ii) If \(L\) is well rounded and has determinant 1, then its covering radius satisfies \[ \sup\limits_{x\in\mathbb R^{n}} \inf_{y\in L} | x-y| \leq {\sqrt{n}\over 2} \]
where equality holds only in a particular case.
If (i) and (ii) hold, the inequality of the arithmetic and geometric mean yields the conjecture. For more information see the reviewer and C. G. Lekkerkerker [Geometry of numbers. 2nd ed., North-Holland Mathematical Library, Vol. 37. Amsterdam etc.: North-Holland (1987; Zbl 0611.10017)] and the reviewer [Convex and discrete geometry. Grundlehren der Mathematischen Wissenschaften 336. Berlin: Springer (2007; Zbl 1139.52001)].
Proposition (ii) has been proved by A. C. Woods [J. Number Theory 4, 157–180 (1972; Zbl 0232.10020)] for \(n=6\). The author shows (i) for all lattices of determinant 1 with \(N(L)>0\) in all dimensions. Using a result of B. J. Birch and H. P. F. Swinnerton-Dyer [Mathematika Lond. 3, 25–39 (1956; Zbl 0074.03702)] this finally yields the conjecture for \(n=6\). This result is an important contribution to the geometry of numbers.

MSC:

11H46 Products of linear forms
11H31 Lattice packing and covering (number-theoretic aspects)
11J20 Inhomogeneous linear forms
52C17 Packing and covering in \(n\) dimensions (aspects of discrete geometry)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Avner Ash, Small-dimensional classifying spaces for arithmetic subgroups of general linear groups, Duke Math. J. 51 (1984), no. 2, 459 – 468. · Zbl 0542.22011
[2] Avner Ash and Mark McConnell, Cohomology at infinity and the well-rounded retract for general linear groups, Duke Math. J. 90 (1997), no. 3, 549 – 576. · Zbl 0903.11016
[3] R. P. Bambah and A. C. Woods, Minkowski’s conjecture for \?=5; a theorem of Skubenko, J. Number Theory 12 (1980), no. 1, 27 – 48. · Zbl 0426.10030
[4] Eva Bayer-Fluckiger, Lattices and number fields, Algebraic geometry: Hirzebruch 70 (Warsaw, 1998) Contemp. Math., vol. 241, Amer. Math. Soc., Providence, RI, 1999, pp. 69 – 84. · Zbl 0951.11016
[5] Eva Bayer-Fluckiger, Ideal lattices, A panorama of number theory or the view from Baker’s garden (Zürich, 1999) Cambridge Univ. Press, Cambridge, 2002, pp. 168 – 184. · Zbl 1043.11057
[6] E. Bayer-Fluckiger and G. Nebe. On the Euclidean minimum of some real number fields. Preprint, 2004. · Zbl 1161.11032
[7] B. J. Birch and H. P. F. Swinnerton-Dyer, On the inhomogeneous minimum of the product of \? linear forms, Mathematika 3 (1956), 25 – 39. · Zbl 0074.03702
[8] A. I. Borevich and I. R. Shafarevich, Number theory, Translated from the Russian by Newcomb Greenleaf. Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. · Zbl 0145.04902
[9] Raoul Bott and Loring W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, vol. 82, Springer-Verlag, New York-Berlin, 1982. · Zbl 0496.55001
[10] J. W. S. Cassels and H. P. F. Swinnerton-Dyer, On the product of three homogeneous linear forms and the indefinite ternary quadratic forms, Philos. Trans. Roy. Soc. London. Ser. A. 248 (1955), 73 – 96. · Zbl 0065.27905
[11] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 3rd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1999. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. · Zbl 0915.52003
[12] H. Davenport. A simple proof of Remak’s theorem on the product of \(n\) linear forms. J. London Math. Soc. 14(1939), 47-51. · Zbl 0020.20502
[13] F. J. Dyson, On the product of four non-homogeneous linear forms, Ann. of Math. (2) 49 (1948), 82 – 109. · Zbl 0031.15402
[14] Samuel Eilenberg and Norman Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, New Jersey, 1952. · Zbl 0047.41402
[15] Michael Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. 56 (1982), 5 – 99 (1983). · Zbl 0516.53046
[16] P. M. Gruber and C. G. Lekkerkerker, Geometry of numbers, 2nd ed., North-Holland Mathematical Library, vol. 37, North-Holland Publishing Co., Amsterdam, 1987. · Zbl 0611.10017
[17] Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, v. 4, Princeton University Press, Princeton, N. J., 1941. · Zbl 0060.39808
[18] J. F. Koksma, Diophantische Approximationen, Springer-Verlag, Berlin-New York, 1974 (German). Reprint. · Zbl 0276.10015
[19] Elon Lindenstrauss and Barak Weiss, On sets invariant under the action of the diagonal group, Ergodic Theory Dynam. Systems 21 (2001), no. 5, 1481 – 1500. · Zbl 1073.37006
[20] Gregory Margulis, Problems and conjectures in rigidity theory, Mathematics: frontiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, pp. 161 – 174. · Zbl 0952.22005
[21] Hermann Minkowski, Diophantische Approximationen. Eine Einführung in die Zahlentheorie, Chelsea Publishing Co., New York, 1957 (German). · JFM 53.0165.01
[22] Hee Oh, Finiteness of compact maximal flats of bounded volume, Ergodic Theory Dynam. Systems 24 (2004), no. 1, 217 – 225. · Zbl 1048.22002
[23] Pierre Pansu, Introduction to \?² Betti numbers, Riemannian geometry (Waterloo, ON, 1993) Fields Inst. Monogr., vol. 4, Amer. Math. Soc., Providence, RI, 1996, pp. 53 – 86. · Zbl 0848.53025
[24] Дискретные подгруппы групп Ли., Издат. ”Мир”, Мосцощ, 1977 (Руссиан). Транслатед фром тхе Енглиш бы О. В. Šварцман; Едитед бы Ѐ. Б. Винберг; Щитх а супплемент ”Аритхметициты оф ирредуцибле латтицес ин семисимпле гроупс оф ранк греатер тхан 1” бы Г. А. Маргулис.
[25] R. Remak. Verallgemeinerung eines Minkowskischen Satzes. Math. Zeitschr. 17-18(1928), 1-34; 173-200.
[26] B. F. Skubenko, A new variant of the proof of the inhomogeneous Minkowski conjecture for \?=5, Trudy Mat. Inst. Steklov. 142 (1976), 240 – 253, 271 (Russian). Number theory, mathematical analysis and their applications. · Zbl 0415.10021
[27] B. F. Skubenko. A proof of Minkowski’s conjecture on the product of \(n\) linear inhomogeneous forms in \(n\) variables for \(n\leq 5\). J. Soviet Math. 6(1976), 627-650. · Zbl 0374.10018
[28] Christophe Soulé, The cohomology of \?\?\(_{3}\)(\?), Topology 17 (1978), no. 1, 1 – 22. · Zbl 0382.57026
[29] George Tomanov and Barak Weiss, Closed orbits for actions of maximal tori on homogeneous spaces, Duke Math. J. 119 (2003), no. 2, 367 – 392. · Zbl 1040.22005
[30] P. Vámos, The missing axiom of matroid theory is lost forever, J. London Math. Soc. (2) 18 (1978), no. 3, 403 – 408. · Zbl 0395.05024
[31] A. C. Woods, Covering six space with spheres, J. Number Theory 4 (1972), 157 – 180. · Zbl 0232.10020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.