×

zbMATH — the first resource for mathematics

On classes of analytic functions related to conic domains. (English) Zbl 1132.30010

MSC:
30C99 Geometric function theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aghalary, R.; Azadi, GH., The dziok – srivastava operator and k-uniformly starlike functions, J. inequal. pure appl. math., 6, 2, 1-7, (2005), Article 52 (electronic) · Zbl 1089.30009
[2] Al-Oboudi, F.M., On univalent functions defined by a generalized Sǎlǎgean operator, Int. J. math. math. sci., 27, 1429-1436, (2004) · Zbl 1072.30009
[3] Bharti, R.; Parvatham, R.; Swaminathan, A., On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. math., 28, 1, 17-32, (1997) · Zbl 0898.30010
[4] Carlson, B.C.; Shaffer, D.B., Starlike and prestarlike hypergeometric functions, SIAM J. math. anal., 15, 4, 737-745, (1984) · Zbl 0567.30009
[5] Eenigburg, P.J.; Miller, S.S.; Mocanu, P.T.; Reade, M.O., On a briot – bouquet differentiation subordination, (), 339-348
[6] Goodman, A.W., On uniformly convex functions, Ann. polon. math., 56, 87-92, (1991) · Zbl 0744.30010
[7] Kanas, S.; Wisniowska, A., Conic regions and k-uniform convexity, II, Folia sci. univ. tehn. resov., 170, 65-78, (1998) · Zbl 0995.30013
[8] Kanas, S.; Wisniowska, A., Conic regions and k-uniform convexity, Comput. appl. math., 105, 327-336, (1999) · Zbl 0944.30008
[9] Kanas, S.; Wisniowska, A., Conic domains and starlike functions, Rev. roumaine math. pures appl., 45, 3, 647-657, (2000) · Zbl 0990.30010
[10] Kanas, S.; Yuguchi, T., Subclasses of k-uniformly convex and starlike functions defined by generalized derivate, I, Indian J. pure appl. math., 32, 9, 1275-1282, (2001) · Zbl 1152.30309
[11] Kanas, S.; Yuguchi, T., Subclasses of k-uniformly convex and starlike functions defined by generalized derivative, II, Publ. inst. math., 69, 83, 91-100, (2001) · Zbl 1003.30010
[12] Ling, Yi; Ding, S., A class of analytic functions defined by fractional derivation, J. math. anal. appl., 186, 504-513, (1994) · Zbl 0813.30016
[13] Ma, W.; Minda, D., Uniformly convex functions, Ann. polon. math., 57, 165-175, (1992) · Zbl 0760.30004
[14] Magdas, I., On alpha-type uniformly convex functions, Stud. univ. babes-bolyai inform., 44, 1, 11-17, (1999)
[15] Owa, S., On the distortion theorems, I, Kyungpook math. J., 18, 1, 53-59, (1978) · Zbl 0401.30009
[16] Owa, S.; Srivastava, H.M., Univalent and starlike generalized hypergeometric functions, Canad. J. math., 39, 5, 1057-1077, (1987) · Zbl 0611.33007
[17] Robertson, M.S., On the theory of univalent functions, Ann. of math., 37, 2, 374-408, (1936) · JFM 62.0373.05
[18] Rogosinski, W., On the coefficients of subordinate functions, Proc. London math. soc., 48, 48-82, (1943) · Zbl 0028.35502
[19] Rønning, F., On starlike functions associated with parabolic regions, Ann. univ. mariae Curie-sklodowska sect. A, 45, 14, 117-122, (1991) · Zbl 0769.30011
[20] Rønning, F., Uniformly convex functions and a corresponding class of starlike functions, Proc. amer. math. soc., 118, 1, 189-196, (1993) · Zbl 0805.30012
[21] Ruscheweyh, St., Convolutions in geometric function theory, Sem. math. sup., vol. 83, (1982), Presses Univ. de Montreal · Zbl 0575.30008
[22] Ruscheweyh, St.; Sheil-Small, T., Hadamard products of schlicht functions and the Pólya – schöenberg conjecture, Comment. math. helv., 48, 119-135, (1973) · Zbl 0261.30015
[23] Sălăgean, G.Ş., Subclasses of univalent functions, (), 362-372
[24] Srivastava, H.M.; Mishra, A.K.; Das, M.K., A nested class of analytic functions defined by fractional calculus, Comm. appl. anal., 2, 3, 321-332, (1998) · Zbl 0897.30003
[25] Srivastava, H.M.; Mishra, A.K., Applications of fractional calculus to parabolic starlike and uniformly convex functions, J. comput. math. appl., 39, 3/4, 57-69, (2000) · Zbl 0948.30018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.