zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Inclusion properties of certain subclasses of analytic functions defined by a multiplier transformation. (English) Zbl 1132.30311
Summary: Let $\cal A$ denote the class of analytic functions with the normalization $f(0)=f'(0)-1=0$ in the open unit disk $\cal U$. Set $$ f^s_\lambda(z)=z+\sum^\infty_{k=2}\left(\frac{k+\lambda}{1+\lambda}\right)^s z^k\quad (s\in\Bbb R; \lambda>-1; z\in\cal U), $$ and define $f^s_{\lambda,\mu}$, in terms of the Hadamard product, $$ f^s_\lambda(z)* f^s_{\lambda,\mu}(z)=\frac{z}{(1-z)^\mu}\quad(\mu>0; z\in\cal U). $$ In this paper, the authors introduce several new subclasses of analytic functions defined by means of the operator $$I^s_{\lambda,\mu}:\cal A\to\cal A$$ given by $$ I^s_{\lambda,\mu}f(z)=f^s_{\lambda,\mu}(z)*f(z)\quad (f\in\cal A;\ s\in\Bbb R; \lambda>-1; \mu>0). $$ Inclusion properties of these classes and the classes involving the generalized Libera integral operator are also considered.

30C45Special classes of univalent and multivalent functions
30C80Maximum principle; Schwarz’s lemma, Lindelöf principle, etc. (one complex variable)
Full Text: DOI
[1] Srivastava, H. M.; Owa, S.: Current topics in analytic function theory. (1992) · Zbl 0976.00007
[2] Uralegaddi, B. A.; Somanatha, C.: Certain classes of univalent functions. Current topics in analytic function theory, 371-374 (1992) · Zbl 0987.30508
[3] Owa, S.; Srivastava, H. M.: Some applications of the generalized libera integral operator. Proc. Japan acad. Ser. A math. Sci. 62, 125-128 (1986) · Zbl 0583.30016
[4] Jung, I. B.; Kim, Y. C.; Srivastava, H. M.: The Hardy space of analytic functions associated with certain oneparameter families of integral operators. J. math. Anal. appl. 176, 138-147 (1993) · Zbl 0774.30008
[5] Bernardi, S. D.: Convex and starlike univalent functions. Trans. amer. Math. soc. 35, 429-446 (1969) · Zbl 0172.09703
[6] Sălăgean, G. S.: Subclasses of univalent functions. Lecture notes in math. 1013, 362-372 (1983)
[7] Flett, T. M.: The dual of an inequality of Hardy and Littlewood and some related inequalities. J. math. Anal. appl. 38, 746-765 (1972) · Zbl 0246.30031
[8] Choi, J. H.; Saigo, M.; Srivastava, H. M.: Some inclusion properties of a certain family of integral operators. J. math. Anal. appl. 276, 432-445 (2002) · Zbl 1035.30004
[9] Kim, Y. C.; Choi, J. H.; Sugawa, T.: Coefficient bounds and convolution properties for certain classes of close-to-convex functions. Proc. Japan acad. Ser. A math. Sci. 76, 95-98 (2000) · Zbl 0965.30006
[10] Ma, W. C.; Minda, D.: An internal geometric characterization of strongly starlike functions. Ann. univ. Mariae Curie-sklodowska sect. A 45, 89-97 (1991) · Zbl 0766.30008
[11] Liu, J. -L.: The Noor integral and strongly starlike functions. J. math. Anal. appl. 261, 441-447 (2001) · Zbl 1040.30005
[12] Liu, J. -L.; Noor, K. I.: Some properties of Noor integral operator. J. nat. Geom. 21, 81-90 (2002) · Zbl 1005.30015
[13] Noor, K. I.: On new classes of integral operators. J. natur. Geom. 16, 71-80 (1999) · Zbl 0942.30007
[14] Noor, K. I.; Noor, M. A.: On integral operators. J. math. Anal. appl. 238, 341-352 (1999) · Zbl 0934.30007
[15] Enigenberg, P.; Miller, S. S.; Mocanu, P. T.; Reade, M. O.: On a briot-bouquet differential subordination. General inequalities 3, 339-348 (1983) · Zbl 0527.30008
[16] Miller, S. S.; Mocanu, P. T.: Differential subordinations and univalent functions. Michigan math. J. 28, 157-171 (1981) · Zbl 0439.30015
[17] Libera, R. J.: Some classes of regular univalent functions. Proc. amer. Math. soc. 16, 755-758 (1965) · Zbl 0158.07702