Ernst, Thomas \(q\)-generating functions for one and two variables. (English) Zbl 1132.33335 Bull. Belg. Math. Soc. - Simon Stevin 12, No. 4, 589-605 (2005). Summary: We use a multidimensional extension of Bailey’s transform to derive two very general \(q\)-generating functions, which are \(q\)-analogues of a paper by H. Exton [Ark. Mat. 30, No. 2, 245–258 (1992; Zbl 0785.33009)]. These expressions are then specialized to give more practical formulae, which are \(q\)-analogues of generating relations for Karlssons generalized Kampé de Fériet function. A number of examples are given including \(q\)-Laguerre polynomials of two variables. Cited in 2 Documents MSC: 33D70 Other basic hypergeometric functions and integrals in several variables 33C65 Appell, Horn and Lauricella functions 05A30 \(q\)-calculus and related topics Citations:Zbl 0785.33009 × Cite Format Result Cite Review PDF