Tunç, Cemil; Ateş, Muzaffer Stability and boundedness results for solutions of certain third order nonlinear vector differential equations. (English) Zbl 1132.34328 Nonlinear Dyn. 45, No. 3-4, 273-281 (2006). Consider the nonlinear vector differential equation \[ \dddot x+F(x, \dot x,\ddot x)\ddot x+B(t)\dot x+h(\dot x)=p(t,x,\dot x,\ddot x), \quad t\geq 0, \tag{*} \] where \(F\) and \(B\) are symmetric \(n\times n\)-matrices depending continuously on their arguments, the functions \(h\) and \(p\) mapping into \(\mathbb{R}^n\) are also continuous functions. Using Lyapunov’s direct method, the authors present conditions guaranteeing the asymptotic stability of the zero solution of (*) and the boundedness of all solutions. Reviewer: Klaus R. Schneider (Berlin) Cited in 1 ReviewCited in 16 Documents MSC: 34D20 Stability of solutions to ordinary differential equations 34C11 Growth and boundedness of solutions to ordinary differential equations Keywords:boundedness; differential equation of third order; Lyapunov function; stability PDF BibTeX XML Cite \textit{C. Tunç} and \textit{M. Ateş}, Nonlinear Dyn. 45, No. 3--4, 273--281 (2006; Zbl 1132.34328) Full Text: DOI References: [1] Reissig, R., Sansone, G., and Conti, R., Nonlinear Differential Equations of Higher Order, Noordhoff, Groningen, 1974. · Zbl 0275.34001 [2] Ezeilo, J. O. C., ’Periodic solutions of certain third order differential equations’, Atti della Accademia Nazionale dei Lincei. Rendiconti. Classe di Scienze Fisiche, Matematiche e Naturali. Serie 57(8), 1974, 1–2; 1975, 54–60. [3] Ezeilo, J. O. C., ’Periodic solutions of certain third order differential equations of the nondissipative type’, Atti della Accademia Nazionale dei Lincei. Rendiconti. Classe di Scienze Fisiche, Matematiche e Naturali. Serie 63(8), 1977, 3–4; 1978, 212–224. · Zbl 0405.34041 [4] Feng, C. H., ’On the existence of almost periodic solutions of nonlinear third-order differential equations’, Annals of Differential Equations 9(4), 1993, 420–424. · Zbl 0792.34042 [5] Feng, C. H., ’The existence of periodic solutions for a third-order nonlinear differential equation’, (Chinese) Gongcheng Shuxue Xuebao 11(2), 1994, 113–117. · Zbl 0925.34009 [6] Mehri, B., ’Periodic solution for certain nonlinear third order differential equations’, Indian Journal of Pure and Applied Mathematics 21(3), 1990, 203–210. · Zbl 0708.34030 [7] Mehri, B. and Shadman, D., ’Periodic solutions of certain third order nonlinear differential equations’, Studia Scientiarum Mathematicarum Hungarica 33(4), 1997, 345–350. · Zbl 0908.34031 [8] Qian, C., ’On global stability of third-order nonlinear differential equations’, Nonlinear Analysis: Theory, Methods & Applications Ser. A 42(4), 2000, 651–661. · Zbl 0969.34048 [9] Qian, C., ’Asymptotic behavior of a third-order nonlinear differential equation’, Journal of Mathematical Analysis and Applications 284(1), 2003, 191–205. · Zbl 1054.34078 [10] Shadman, D. and Mehri, B., ’On the periodic solutions of certain nonlinear third order differential equations’, Zeitschrift für Angewandte Mathematik und Mechanik 75(2), 1995, 164–166. · Zbl 0828.34029 [11] Tejumola, H. O., ’Periodic solutions of certain third order differential equations’, Atti della Accademia Nazionale dei Lincei. Rendiconti. Classe di Scienze Fisiche, Matematiche e Naturali. Serie 66(8), 1979, no. 4, 243–249. · Zbl 0482.34029 [12] Vladimir, V., ’To existence of the periodic solution of a third-order nonlinear differential equation’, Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 29, 1990, 123–163. [13] Yoshizawa, T., ’Stability theory and the existence of periodic solutions and almost periodic solutions’, Applied Mathematical Sciences, Vol. 14, Springer-Verlag, New York-Heidelberg, 1975. · Zbl 0304.34051 [14] Zhang, X. Z., ’Stability in the large of a class of third-order nonlinear ordinary differential equations’, Kexue Tongbao (English edn.) 28(7), 1983, 999–1000. [15] Wang, L. and Wang, M. Q., ’On the construction of globally asymptotically stable Lyapunov functions for a type of nonlinear third-order system’, Acta Mathematicae Applicatae Sinica 6(3), 1983, 309–323. · Zbl 0517.34042 [16] Abou-El-Ela, A. M. A., ’Boundedness of the solutions of certain third-order vector differential equations’, Annals of Differential Equations 1(2), 1985, 127–139. · Zbl 0603.34030 [17] Afuwape, A.U., ’Ultimate boundedness results for a certain system of third-order nonlinear differential equations’, Journal of Mathematical Analysis and Applications 97(1), 1983, 140–150. · Zbl 0537.34031 [18] Afuwape, A. U., ’ Further ultimate boundedness results for a third-order nonlinear system of differential equations’, Unione Matematica Italiana Bollettino C. Serie VI 4(1), 1985, 347–361. · Zbl 0592.34024 [19] Edziwy Spolhk, S., ’Stability of certain third order vector differential equations’, Bulletin de l’Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques 23, 1975, 15–21. [20] Ezeilo, J. O. C. and Tejumola, H. O., ’Boundedness and periodicity of solutions of a certain system of third-order non-linear differential equations’, Annali di Matematica Pura ed Applicata 74(4), 1966, 283–316. · Zbl 0148.06701 [21] Feng, C., ’On the existence of periodic solutions for a certain system of third order nonlinear differential equations’, Annals of Differential Equations 11(3), 1995, 264–269. · Zbl 0880.34040 [22] Kalantarov, V. and Tiryaki, A., ’On the stability results for third order differential-operator equations’, Turkish Journal of Mathematics 21(2), 1997, 179–186. · Zbl 0892.35026 [23] Meng, F. W., ’Ultimate boundedness results for a certain system of third order nonlinear differential equations’, Journal of Mathematical Analysis and Applications 177(2), 1993, 496–509. · Zbl 0783.34042 [24] Tiryaki, A., ’Boundedness and periodicity results for a certain system of third order nonlinear differential equations’, Indian Journal of Pure and Applied Mathematics 30(4), 1999, 361–372. · Zbl 0936.34041 [25] Tunç, C., ’On the boundedness and periodicity of the solutions of a certain vector differential equation of third-order’, Applied Mathematics and Mechanics (English edn.) 20(2), 1999, 163–170. · Zbl 0933.34058 [26] Tunç, C., ’Uniform ultimate boundedness of the solutions of third-order nonlinear differential equations’, Kuwait Journal of Science & Engineering 32(1), 2005, 39–48. · Zbl 1207.34043 [27] Tunç, C., ’On the asymptotic behavior of solutions of certain third-order nonlinear differential equation’, Journal of Applied Mathematics and Stochastic Analysis 2005(1), 2005, 29–35. · Zbl 1077.34052 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.