zbMATH — the first resource for mathematics

Weak convergence results for inhomogeneous rotating fluid equations. (English) Zbl 1132.35440
Summary: We consider the equations governing incompressible, viscous fluids in three space dimensions, rotating around an inhomogeneous vector \(B(x)\); this is a generalization of the usual rotating fluid model (where \(B\) is constant). In the case n which \(B\) has non-degenerate critical points, we prove the weak convergence of Leray-type solutions towards a vector field which satisfies a heat equation as the rotation rate tends to infinity. The method of proof uses weak compactness arguments, which also enable us to recover the usual 2D Navier-Stokes limit in the case when \(B\) is constant.

35Q35 PDEs in connection with fluid mechanics
35D05 Existence of generalized solutions of PDE (MSC2000)
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76U05 General theory of rotating fluids
86A05 Hydrology, hydrography, oceanography
86A10 Meteorology and atmospheric physics
Full Text: DOI
[1] J.-P. Aubin,Un théorème de compacité, Notes aux Comptes Rendus de l’Académie des Sciences de Paris309 (1963), 5042–5044. · Zbl 0195.13002
[2] A. Babin, A. Mahalov and B. Nicolaenko,Global splitting, integrability and regularity of 3D Euler and Navier-Stokes equations for uniformly rotating fluids, European J. Mech.,15 (1996), 291–300. · Zbl 0882.76096
[3] A. Babin, A. Mahalov and B. Nicolaenko,Resonances and regularity for Boussinesq equations, Russian J. Math. Phys.4 (1996), 417–428. · Zbl 0955.76521
[4] A. Babin, A. Mahalov and B. Nicolaenko,Global regularity of 3D rotating Navier-Stokes equations for resonant domains, Indiana Univ. Math. J.48 (1999), 1133–1176. · Zbl 0932.35160
[5] J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier,Anisotropy and dispersion in rotating fluids, inNonlinear Partial Differential Equations and their Applications, Collège de France Seminar, Studies in Mathematics and its Applications,31, North-Holland Amsterdam, 2002, pp. 171–191. · Zbl 1034.35107
[6] J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier,Ekman boundary layers in rotating fluids, ESAIM Contrôle Optimal et Calcul des Variations, Special Tribute issue to Jacques-Louis Lions,8 (2002), 441–466. · Zbl 1070.35505
[7] P. Embid and A. Majda,Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity, Comm. Partial Differential Equations21 (1996), 619–658. · Zbl 0849.35106
[8] I. Gallagher,Applications of Schochet’s methods to parabolic equations. J. Math. Pures Appl.77 (1998), 989–1054. · Zbl 1101.35330
[9] A. E. Gill,Atmosphere-Ocean Dynamics, International Geophysics Series, Vol. 30, Academic Press, New York, 1982.
[10] F. Golse and L. Saint-Raymond,The Vlasov-Poisson system with strong magnetic field, J. Math. Pures Appl.78 (1999), 791–817. · Zbl 0977.35108
[11] H. P. Greenspan,The Theory of Rotating Fluids, Cambridge University Press, 1969. · Zbl 0181.54303
[12] E. Grenier,Oscillatory perturbations of the Navier-Stokes equations, J. Math. Pures Appl.76 (1997), 477–498. · Zbl 0885.35090
[13] E. Grenier and N. Masmoudi,Ekman layers of rotating fluids, the case of well prepared initial data, Comm. Partial Differential Equations22 (1997), 953–975. · Zbl 0880.35093
[14] J. Leray,Essai sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math.63 (1933), 193–248. · JFM 60.0726.05
[15] P.-L. Lions and N. Masmoudi,Incompressible limit for a viscous compressible fluid J. Math. Pures Appl.77 (1998), 585–627. · Zbl 0909.35101
[16] P.-L. Lions and N. Masmoudi,Une approche locale de la limite incompressible, C. R. Acad. Sci. Paris Sér. I Math.329 (1999), 387–392. · Zbl 0937.35132
[17] N. Masmoudi,Ekman layers of rotating fluids: the case of general initial data, Comm. Pure Appl. Math.53 (2000), 432–483. · Zbl 1047.76124
[18] J. Pedlosky,Geophysical fluid dynamics, Springer, Berlin, 1979. · Zbl 0429.76001
[19] S. Schochet,Fast singular limits of hyperbolic PDEs, J. Differential Equations114 (1994), 476–512. · Zbl 0838.35071
[20] R. Temam and M. Ziane,Some mathematical problems in geophysical fluid dynamics, inHandbook of Mathematical Fluid Dynamics, Vol. III, North-Holland, Amsterdam, 2004, pp. 535–657. · Zbl 1222.35145
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.