Yu, Kyusang; Park, Byeong U.; Mammen, Enno Smooth backfitting in generalized additive models. (English) Zbl 1132.62028 Ann. Stat. 36, No. 1, 228-260 (2008). Summary: Generalized additive models have been popular among statisticians and data analysts in multivariate nonparametric regression with non-Gaussian responses including binary and count data. In this paper, a new likelihood approach for fitting generalized additive models is proposed. It aims to maximize a smoothed likelihood. The additive functions are estimated by solving a system of nonlinear integral equations. An iterative algorithm based on smooth backfitting is developed from the Newton-Kantorovich theorem. Asymptotic properties of the estimator and convergence of the algorithm are discussed. It is shown that our proposal based on local linear fit achieves the same bias and variance as the oracle estimator that uses knowledge of the other components. Numerical comparison with the two-stage estimator proposed by J. L. Horowitz and E. Mammen [Ann. Stat. 32, No. 6, 2412–2443 (2004; Zbl 1069.62035)] is also made. Cited in 53 Documents MSC: 62G08 Nonparametric regression and quantile regression 62G20 Asymptotic properties of nonparametric inference 65C60 Computational problems in statistics (MSC2010) 62G07 Density estimation 65R20 Numerical methods for integral equations Keywords:generalized additive models; smoothed likelihood; smooth backfitting; curse of dimensionality; Newton-Kantorovich theorem Citations:Zbl 1069.62035 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Bickel, P., Klaassen, A., Ritov, Y. and Wellner, J. (1993). Efficient and Adaptive Estimation for Semiparametric Models. The Johns Hopkins Univ. Press, Baltimore. · Zbl 0786.62001 [2] Buja, A., Hastie, T. and Tibshirani, R. (1989). Linear smoothers and additive models (with discussion). Ann. Statist. 17 453-510. · Zbl 0689.62029 · doi:10.1214/aos/1176347115 [3] Deimling, K. (1985). Nonlinear Functional Analysis. Springer, Berlin. · Zbl 0559.47040 [4] Eilers, P. H. C. and Marx, B. D. (2002). Generalized linear additive smooth structures. J. Comput. Graph. Statist. 11 758-783. JSTOR: · doi:10.1198/106186002321018777 [5] Fan, J., Heckman, N. E. and Wand, M. P. (1995). Local polynomial kernel regression for generalized linear models and quasi-likelihood functions. J. Amer. Statist. Assoc. 90 141-150. JSTOR: · Zbl 0818.62036 · doi:10.2307/2291137 [6] Friedman, J. and Stuetzle, W. (1981). Projection pursuit regression. J. Amer. Statist. Assoc. 76 376, 817-823. JSTOR: · doi:10.2307/2287576 [7] Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models. Chapman and Hall, London. · Zbl 0747.62061 [8] Horowitz, J. and Mammen, E. (2004). Nonparametric estimation of an additive model with a link function. Ann. Statist. 32 2412-2443. · Zbl 1069.62035 · doi:10.1214/009053604000000814 [9] Kauermann, G. and Opsomer, J. D. (2003). Local likelihood estimation in generalized additive models. Scand. J. Statist. 30 317-337. · Zbl 1053.62084 · doi:10.1111/1467-9469.00333 [10] Lee, Y. K. (2004). On marginal integration method in nonparametric regression. J. Korean Statist. Soc. 33 435-448. [11] Linton, O. and Härdle, W. (1996). Estimating additive regression models with known links. Biometrika 83 529-540. JSTOR: · Zbl 0866.62017 · doi:10.1093/biomet/83.3.529 [12] Linton, O. and Nielsen, J. P. (1995). A kernel method of estimating structured nonparametric regression based on marginal integration. Biometrika 82 93-100. JSTOR: · Zbl 0823.62036 · doi:10.1093/biomet/82.1.93 [13] Linton, O. (2000). Efficient estimation of generalized additive nonparametric regression models. Econometric Theory 16 502-523. JSTOR: · Zbl 0963.62037 · doi:10.1017/S0266466600164023 [14] Luenberger, D. G. (1969). Optimization by Vector Space Methods. Wiley, New York. · Zbl 0176.12701 [15] Mammen, E., Linton, O. and Nielsen, J. P. (1999). The existence and asymptotic properties of a backfitting projection algorithm under weak conditions. Ann. Statist. 27 1443-1490. · Zbl 0986.62028 [16] Mammen, E., Marron, J. S., Turlach, B. A. and Wand, M. P. (2001). A general projection framework for constrained smoothing. Statist. Sci. 16 232-248. · Zbl 1059.62535 · doi:10.1214/ss/1009213727 [17] Mammen, E. and Nielsen, J. P. (2003). Generalised structured models. Biometrika 90 551-566. · Zbl 1436.62313 · doi:10.1093/biomet/90.3.551 [18] Mammen, E. and Park, B. U. (2005). Bandwidth selection for smooth backfitting in additive models. Ann. Statist. 33 1260-1294. · Zbl 1072.62025 · doi:10.1214/009053605000000101 [19] Mammen, E. and Park, B. U. (2006). A simple smooth backfitting method for additive models. Ann. Statist. 34 2252-2271. · Zbl 1106.62042 · doi:10.1214/009053606000000696 [20] Nielsen, J. and Sperlich, S. (2005). Smooth backfitting in practice. J. Roy. Statist. Soc. Ser. B 67 43-61. · Zbl 1060.62048 · doi:10.1111/j.1467-9868.2005.00487.x [21] Opsomer, J. D. (2000). Asymptotic properties of backfitting estimators. J. Multivariate Anal. 73 166-179. · Zbl 1065.62506 · doi:10.1006/jmva.1999.1868 [22] Opsomer, J. D. and Ruppert, D. (1997). Fitting a bivariate additive model by local polynomial regression. Ann. Statist. 25 186-211. · Zbl 0869.62026 · doi:10.1214/aos/1034276626 [23] Stone, C. J. (1985). Additive regression and other nonparametric models. Ann. Statist. 13 689-705. · Zbl 0605.62065 · doi:10.1214/aos/1176349548 [24] Stone, C. J. (1986). The dimensionality reduction principle for generalized additive models. Ann. Statist. 14 590-606. · Zbl 0603.62050 · doi:10.1214/aos/1176349940 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.