×

A test for model specification of diffusion processes. (English) Zbl 1132.62063

Summary: We propose a test for model specification of a parametric diffusion process based on kernel estimation of the transitional density of the process. The empirical likelihood is used to formulate a statistic, for each kernel smoothing bandwidth, which is effectively a Studentized \(L_{2}\)-distance between the kernel transitional density estimator and the parametric transitional density implied by the parametric process. To reduce the sensitivity of the test to smoothing bandwidth choice, the final test statistic is constructed by combining the empirical likelihood statistics over a set of smoothing bandwidths. To better capture the finite sample distribution of the test statistic and data dependence, the critical value of the test is obtained by a parametric bootstrap procedure. Properties of the test are evaluated asymptotically and numerically by simulation and by a real data example.

MSC:

62M02 Markov processes: hypothesis testing
62G07 Density estimation
62F40 Bootstrap, jackknife and other resampling methods
65C60 Computational problems in statistics (MSC2010)

References:

[1] Aït-Sahalia, Y. (1996). Testing continuous-time models of the spot interest rate. Rev. Financial Studies 9 385-426.
[2] Aït-Sahalia, Y. (1999). Transition densities for interest rate and other nonlinear diffusions. J. Finance 54 1361-1395.
[3] Aït-Sahalia, Y. (2002). Maximum likelihood estimation of discretely sampled diffusions: A closed-form approximation approach. Econometrica 70 223-262. · Zbl 1104.62323 · doi:10.1111/1468-0262.00274
[4] Aït-Sahalia, Y., Bickel, P. and Stoker, T. (2001). Goodness-of-fit tests for regression using kernel methods. J. Econometrics 105 363-412. · Zbl 1004.62042
[5] Aït-Sahalia, Y., Fan, J. and Peng, H. (2006). Nonparametric transition based tests for jump diffusions. Working paper. Available at http://www.princeton.edu/ yacine/research.htm. · Zbl 1388.62124
[6] Aït-Sahalia, Y. and Kimmel, R. (2005). Estimating affine multifactor term structure models using closed-form likelihood expansions. Working paper. Available at http://www.princeton.edu/ yacine/research.htm.
[7] Bandi, F. and Phillips, P. C. B. (2003). Fully nonparametric estimation of scalar diffusion models. Econometrica 71 241-284. JSTOR: · Zbl 1136.62365 · doi:10.1111/1468-0262.00395
[8] Brown, B. and Chen, S. X. (1998). Combined and least squares empirical likelihood. Ann. Inst. Statist. Math. 50 697-714. · Zbl 0946.62018 · doi:10.1023/A:1003760813552
[9] Cai, Z. and Hong, Y. (2003). Nonparametric methods in continuous-time finance: A selective review. In Recent Advances and Trends in Nonparametric Statistics (M. G. Akritas and D. M. Politis, eds.) 283-302. · doi:10.1016/B978-044451378-6/50019-3
[10] Chen, S. X. and Cui, H. J. (2007). On the second order properties of empirical likelihood with moment restrictions. J. Econometrics . · Zbl 1407.62157 · doi:10.1016/j.jeconom.2006.10.006
[11] Chen, S. X., Gao, J. and Tang, C. Y. (2007). A test for model specification of diffusion processes. Technical report, Dept. Statistics, Iowa State Univ. · Zbl 1132.62063 · doi:10.1214/009053607000000659
[12] Chen, S. X., Härdle, W. and Li, M. (2003). An empirical likelihood goodness-of-fit test for time series. J. Roy. Statist. Soc. Ser. B 65 663-678. JSTOR: · Zbl 1063.62064 · doi:10.1111/1467-9868.00408
[13] Cox, J. C., Ingersoll, J. E. and Ross, S. A. (1985). A theory of term structure of interest rates. Econometrica 53 385-407. · Zbl 1274.91447
[14] Fan, J. (1996). Test of significance based on wavelet thresholding and Neyman’s truncation. J. Amer. Statist. Assoc. 434 674-688. · Zbl 0869.62032 · doi:10.2307/2291663
[15] Fan, J. (2005). A selective overview of nonparametric methods in financial econometrics. Statist. Sci. 20 317-357. · Zbl 1130.62364 · doi:10.1214/088342305000000412
[16] Fan, J. and Gijbels, I. (1996). Local Polynomial Modeling and Its Applications . Chapman and Hall, London. · Zbl 0873.62037
[17] Fan, J. and Huang, L. (2001). Goodness-of-fit test for parametric regression models. J. Amer. Statist. Assoc. 96 640-652. JSTOR: · Zbl 1017.62014 · doi:10.1198/016214501753168316
[18] Fan, J. and Yao, Q. (2003). Nonlinear Time Series: Nonparametric and Parametric Methods . Springer, New York. · Zbl 1014.62103
[19] Fan, J., Yao, Q. and Tong, H. (1996). Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems. Biometrika 83 189-196. JSTOR: · Zbl 0865.62026 · doi:10.1093/biomet/83.1.189
[20] Fan, J. and Yim, T. H. (2004). A data-driven method for estimating conditional densities. Biometrika 91 819-834. · Zbl 1078.62032 · doi:10.1093/biomet/91.4.819
[21] Fan, J. and Zhang, C. (2003). A re-examination of Stanton’s diffusion estimation with applications to financial model validation. J. Amer. Statist. Assoc. 457 118-134. · Zbl 1073.62571 · doi:10.1198/016214503388619157
[22] Fan, J., Zhang, C. and Zhang, J. (2001). Generalized likelihood ratio statistics and Wilks phenomenon. Ann. Statist. 29 153-193. · Zbl 1029.62042 · doi:10.1214/aos/996986505
[23] Fan, J. and Zhang, J. (2004). Sieved empirical likelihood ratio tests for nonparametric functions. Ann. Statist. 29 153-193. · Zbl 1056.62057 · doi:10.1214/009053604000000210
[24] Fan, Y. and Li, Q. (1996). Consistent model specification tests: Omitted variables and semiparametric functional forms. Econometrica 64 865-890. JSTOR: · Zbl 0854.62038 · doi:10.2307/2171848
[25] Gao, J. and King, M. L. (2005). Estimation and model specification testing in nonparametric and semiparametric regression models. Unpublished paper. Available at www.maths.uwa.edu.au/ jiti/jems.pdf.
[26] Genon-Caralot, V., Jeantheau, T. and Laredo, C. (2000). Stochastic volatility models as hidden Markov models and statistical applications. Bernoulli 6 1051-1079. · Zbl 0966.62048 · doi:10.2307/3318471
[27] Gozalo, P. L. and Linton, Q. (2001). Testing additivity in generalized nonparametric regression models with estimated parameters. J. Econometrics 104 1-48. · Zbl 0978.62032 · doi:10.1016/S0304-4076(01)00049-5
[28] Härdle, W. and Mammen, E. (1993). Comparing nonparametric versus parametric regression fits. Ann. Statist. 21 1926-1947. · Zbl 0795.62036 · doi:10.1214/aos/1176349403
[29] Hart, J. (1997). Nonparametric Smoothing and Lack-of-Fit Tests . Springer, New York. · Zbl 0886.62043
[30] Hjellvik, V., Yao, Q. and Tjøstheim, D. (1998). Linearity testing using local polynomial approximation. J. Statist. Plann. Inference 68 295-321. · Zbl 0942.62051 · doi:10.1016/S0378-3758(97)00146-8
[31] Hjort, N. L., McKeague, I. W. and Van Keilegom, I. (2006). Extending the scope of empirical likelihood. Manuscript. · Zbl 1160.62029
[32] Hong, Y. and Li, H. (2005). Nonparametric specification testing for continuous-time models with application to spot interest rates. Rev. Financial Studies 18 37-84.
[33] Horowitz, J. L. and Spokoiny, V. G. (2001). An adaptive, rate-optimal test of a parametric mean-regression model against a nonparametric alternative. Econometrica 69 599-632. JSTOR: · Zbl 1017.62012 · doi:10.1111/1468-0262.00207
[34] Hyndman, R. J. and Yao, Q. (2002). Nonparametric estimation and symmetry tests for conditional density functions. J. Nonparametr. Statist. 14 259-278. · Zbl 1013.62040 · doi:10.1080/10485250212374
[35] Jiang, G. and Knight, J. (1997). A nonparametric approach to the estimation of diffusion processes with an application to a short-term interest rate model. Econometric Theory 13 615-645. JSTOR:
[36] Kitamura, Y. (1997). Empirical likelihood methods with weakly dependent processes. Ann. Statist. 25 2084-2102. · Zbl 0881.62095 · doi:10.1214/aos/1069362388
[37] Li, G. (2003). Nonparametric likelihood ratio goodness-of-fit tests for survival data. J. Multivariate Analysis 86 166-182. · Zbl 1025.62020 · doi:10.1016/S0047-259X(02)00058-1
[38] Li, Q. (1999). Consistent model specification tests for time series econometric models. J. Econometrics 92 101-147. · Zbl 0929.62054 · doi:10.1016/S0304-4076(98)00087-6
[39] Lo, A. W. (1988). Maximum likelihood estimation of generalized Itô processes with discretely sampled data. Econometric Theory 4 231-247.
[40] Müller, H. G. and Stadtmüller, U. (1999). Multivariate boundary kernels and a continuous least squares principle. J. Roy. Statist. Soc. Ser. B 61 439-458. · Zbl 0927.62035 · doi:10.1111/1467-9868.00186
[41] Owen, A. (1988). Empirical likelihood ratio confidence regions for a single functional. Biometrika 75 237-249. JSTOR: · Zbl 0641.62032 · doi:10.1093/biomet/75.2.237
[42] Pritsker, M. (1998). Nonparametric density estimation and tests of continuous time interest rate models. Rev. Financial Studies 11 449-487.
[43] Qin, J. and Lawless, J. (1994). Empirical likelihood and general estimating functions. Ann. Statist. 22 300-325. · Zbl 0799.62049 · doi:10.1214/aos/1176325370
[44] Robinson, P. (1989). Hypothesis testing in semiparametric and nonparametric models for econometric time series. Rev. Economic Studies 56 511-534. JSTOR: · Zbl 0681.62101 · doi:10.2307/2297498
[45] Scott, D. W. (1992). Multivariate Density Estimation . Wiley, New York. · Zbl 0850.62006
[46] Tripathi, G. and Kitamura, Y. (2003). Testing conditional moment restrictions. Ann. Statist. 31 2059-2095. · Zbl 1044.62049 · doi:10.1214/aos/1074290337
[47] Vasicek, O. (1977). An equilibrium characterization of the term structure. J. Financial Economics 5 177-188. · Zbl 1372.91113
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.