zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Efficient shooting method for solving two point boundary value problems. (English) Zbl 1132.65067
Summary: We present an efficient shooting method for solving two point boundary value problems. The Adomian decomposition method is utilized to obtain a series solution of the initial value problems involved. Numerical examples and comparison to the work of others is also done.

MSC:
65L10Boundary value problems for ODE (numerical methods)
34B15Nonlinear boundary value problems for ODE
WorldCat.org
Full Text: DOI
References:
[1] Adomian, G.: Solving frontier problems of physics: the decomposition methods, (1994) · Zbl 0802.65122
[2] Adomian, G.: A review of the decomposition method in applied mathematics, J math anal appl 135, 501-544 (1988) · Zbl 0671.34053 · doi:10.1016/0022-247X(88)90170-9
[3] Attili, B. S.: Multiple shooting and the calculation of some types of singularities in bvp’s, Int J comput math 32, 97-111 (1990) · Zbl 0752.65063 · doi:10.1080/00207169008803818
[4] Attili, B. S.: On the numerical implementation of the shooting methods to the one-dimensional singular boundary value problems, Int J comput math 47, 65-75 (1993) · Zbl 0812.65070 · doi:10.1080/00207169308804163
[5] Chawla, M. M.; Shivkumar, P. N.: An efficient finite difference method for two point boundary value problems, Neural parallel sci comput 4, 387-395 (1996) · Zbl 1060.65626
[6] Finlayson, B. A.: Method of weighted residuals and variational principle, (1972) · Zbl 0319.49020
[7] Ha, S. N.: A nonlinear shooting method for two point boundary value problems, Comput math appl 42, 1411-1420 (2001) · Zbl 0999.65077 · doi:10.1016/S0898-1221(01)00250-4
[8] Isaacson, E.; Keller, H. B.: Analysis of numerical methods, (1966) · Zbl 0168.13101
[9] Keller, H. B.: Numerical methods for two point boundary value problems, (1968) · Zbl 0172.19503
[10] Keller, H. B.: Numerical solution of two point boundary value problems, (1976)
[11] Keller, H. B.: Numerical methods for two point boundary value problems, (1992)
[12] Osborne, M. R.: On shooting methods for boundary value problems, J math anal appl 27, 417-433 (1969) · Zbl 0177.20402 · doi:10.1016/0022-247X(69)90059-6
[13] Porter, M. B.; Reiss, E. L.: A note on the relationship between finite difference and shooting methods for ODE eigenvalue problems, SIAM J numer anal 23, 1034-1039 (1986) · Zbl 0619.65077 · doi:10.1137/0723071
[14] Qu, R.; Agarwal, R.: A collocation method for solving a class of singular nonlinear two-point boundary value problems, J comput appl math 83, 147-163 (1997) · Zbl 0888.65088 · doi:10.1016/S0377-0427(97)00070-8
[15] Rentrop, P.: A Taylor series method for the numerical solution of two point boundary value problems, Numer math 31, 359-375 (1979) · Zbl 0421.65051 · doi:10.1007/BF01404566
[16] Reddien, G. W.: Projection methods and singular two point boundary value problems, Numer math 25, 427-439 (1975)
[17] Reddien, G. W.: Projection methods for two point boundary value problems, SIAM rev 22, 156-171 (1980) · Zbl 0464.65052 · doi:10.1137/1022025
[18] Sen, R. N.; Bellal-Hussain, Md.: Finite difference methods for certain two point boundary value problems, J comput appl math 70, 33-50 (1996) · Zbl 0854.65066 · doi:10.1016/0377-0427(95)00146-8
[19] Shampine, L. F.: Singular boundary value problems for ODE’s, Appl math comput 138, No. 1, 99-112 (2003) · Zbl 1027.65103 · doi:10.1016/S0096-3003(02)00111-X
[20] Shampine, L. F.; Reichelt, M. W.: The Matlab ODE suite, SIAM J sci comput 18, 1-22 (1997) · Zbl 0868.65040 · doi:10.1137/S1064827594276424
[21] Stoer, J.; Bulirsch, R.: Introduction to numerical analysis, (1980) · Zbl 0553.65004
[22] Syam, M. I.; Attili, B. S.: Numerical solution of singularly perturbed 5th order two point boundary value problem, Appl math comput 170, 1104-1116 (2005) · Zbl 1103.65087 · doi:10.1016/j.amc.2005.01.003
[23] Syam, M. I.: Adomian decomposition method for approximating the solution of the Korteweg-devries equation, Appl math comput 162, No. 3, 1465-1473 (2005) · Zbl 1063.65112 · doi:10.1016/j.amc.2004.03.021
[24] Tirmizi, I. A.; Twizell, E. H.: Higher order finite difference methods for nonlinear second order two point boundary value problems, Appl math lett 15, 897-902 (2002) · Zbl 1013.65078 · doi:10.1016/S0893-9659(02)00060-5
[25] Wazwaz, A. M.: A reliable algorithm for obtaining positive solutions for nonlinear boundary value problems, Int J comput math appl 41, 1237-1244 (2001) · Zbl 0983.65090 · doi:10.1016/S0898-1221(01)00094-3
[26] Wazwaz, A. M.: Approximate solutions to boundary value problems of higher order by the modified decomposition method, Comput math appl 40, 679-691 (2000) · Zbl 0959.65090 · doi:10.1016/S0898-1221(00)00187-5