El-Azab, M. S.; El-Gamel, Mohamed A numerical algorithm for the solution of telegraph equations. (English) Zbl 1132.65087 Appl. Math. Comput. 190, No. 1, 757-764 (2007). The paper describes a numerical approximation for the nonlinear telegraph equation, a second-order hyperbolic partial differential equation. The scheme uses Rothe’s method for time discretization, and a Galerkin method with scaling functions as test and trial functions for space discretization. Compactly supported Daubechies scaling functions are used. The corresponding connection coefficients are computed to evaluate the nonlinear terms in coefficient space and error estimates are given. Finally numerical results are presented in one space dimension using Daubechies scaling functions of order 6. Reviewer: Kai Schneider (Marseille) Cited in 39 Documents MSC: 65M20 Method of lines for initial value and initial-boundary value problems involving PDEs 65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs 65T60 Numerical methods for wavelets 35L70 Second-order nonlinear hyperbolic equations 65M15 Error bounds for initial value and initial-boundary value problems involving PDEs Keywords:wavelet; Rothe’s method; nonlinear telegraph equation; Galerkin method; Daubechies scaling functions; error estimates; numerical results PDF BibTeX XML Cite \textit{M. S. El-Azab} and \textit{M. El-Gamel}, Appl. Math. Comput. 190, No. 1, 757--764 (2007; Zbl 1132.65087) Full Text: DOI OpenURL References: [1] Abdusalam, H.A., Analytic and approximate solutions for Nagumo telegraph reaction diffusion equation, Appl. math. comput., 157, 515-522, (2004) · Zbl 1054.65104 [2] Amaratunga, K.; Wiliams, J.R.; Qian, S.; Weiss, J., Wavelet – galerkin solution for one-dimensional partial differential equations, Int. J. numer. meth. eng., 37, 2705-2716, (1994) [3] Daubechies, I., Ten lectures on wavelets, (1992), SIAM Philadelphia · Zbl 0776.42018 [4] Glowiniski, R.; Lawton, W.M.; Ravachol, M.; Tenenbaum, E., Wavelet solutions of linear and nonlinear elliptic, parabolic, and hyperbolic problems in one space dimension, Comput. meth. appl. sci. eng., 55-120, (1990), (Chapter 1) · Zbl 0799.65109 [5] L Ho, S.; Yang, S.Y., Wavelet – galerkin method for solving parabolic equations in finite domains, Finite element anal. des., 37, 1023-1037, (2001) · Zbl 0987.65094 [6] Jin, F.; Ye, T.Q., Instability analysis of prismatic members by wavelet – galerkin method, Adv. eng. software, 30, 361-367, (1999) [7] Kačur, J., Method of rothe in evolution equations, Teubner-texte zur Mathematik, (1985), BSB Teubner Verlagsges Leipzig · Zbl 0582.65084 [8] Kufner, A.; John, O.; Fučik, S., Function spaces, (1997), Nordhoff Leyden [9] A. Latto, H.L. Resniko, E. Tenenbaum, The evaluation of connection coefficients of compactly supported wavelets, in: Proc. French-USA Workshop on Wavelets and Turbulence, Princeton Univ., June 1991, Springer, New York, 1992. [10] Metaxas, A.C.; Meredith, R.J., Industrial microwave, Heating, (1993), Peter Peregrinus London [11] Ming-quayer, C., The computation of wavelet – galerkin approximation on a bounded interval, Int. J. numer. meth. eng., 39, 2921-2944, (1996) · Zbl 0884.76058 [12] V. Pluschke Rothe’s method for parabolic problems with nonlinear degenerating coefficient, Report No. 14, des FB Mathematik und Informatik, 1996. [13] Rektorys, K., The method of discretization in time and partial differential equations, (1982), Reidel Publ. Comp. Dortrecht-Boston-London · Zbl 0522.65059 [14] Roussy, G.; Pearcy, J.A., Foundations and industrial applications of microwaves and radio frequency fields, (1995), John Wiley New York [15] R. Vudu, U.C. Barkeley, A wavelet collection methods for solving partial differential equations, Mathematical report Matyh. 228B, 2001. [16] Williams, J.R.; Amaratunga, K., Introduction to wavelets in engineering, Int. J. numer. meth. eng., 37, 2365-2388, (1994) · Zbl 0812.65144 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.