zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the Euler equations of incompressible fluids. (English) Zbl 1132.76009
Summary: Euler equations of incompressible fluids use and enrich many branches of mathematics, from integrable systems to geometric analysis. They present important open physical and mathematical problems. Examples include the stable statistical behavior of ill-posed free surface problems such as Rayleigh-Taylor and Kelvin-Helmholtz instabilities. The paper describes some of the open problems related to the incompressible Euler equations, with emphasis on the blow-up problem, the inviscid limit and anomalous dissipation. Some of the recent results on the quasigeostrophic model are also mentioned.

76B03Existence, uniqueness, and regularity theory (fluid mechanics)
76-02Research monographs (fluid mechanics)
35Q35PDEs in connection with fluid mechanics
Full Text: DOI