×

Some consequences of spacetime fuzziness. (English) Zbl 1132.83306

Summary: Finite resolution of spacetime at Planck scale gives it a fuzzy structure (the so-called foamy or fractal spacetime). This fuzzy structure of spacetime is a consequence of quantum fluctuation of geometry itself and can be described within non-commutative geometry and some alternative approaches to quantum gravity. In this paper, some consequences of spacetime fuzziness are studied. Due to this fuzzy structure, some basic notions of ordinary quantum mechanics such as position space representation, wave packet broadening during its propagation and coherent states of quantum mechanical systems should be re-examined.

MSC:

83C47 Methods of quantum field theory in general relativity and gravitational theory
82B10 Quantum equilibrium statistical mechanics (general)
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Damour, T.; Piazza, F.; Veneziano, G., Violations of the equivalence principle in a dilaton runaway scenario, Phys Rev D, 66, 046007 (2002)
[2] Lämmerzahl, C., Quantum tests of foundations of general relativity, Class Quant Grav, 14, 13 (1998) · Zbl 0905.53056
[3] Rovelli, C., Quantum gravity (2004), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0962.83507
[4] Gross, D. J.; Mende, P. F., String theory beyond the Planck scale, Nucl Phys B, 303, 407 (1988)
[5] Konishi, K.; Paffuti, G.; Provero, P., Minimum physical length and the generalized uncertainty principle in string theory, Phys Lett B, 234, 276 (1990)
[6] Amati, D.; Ciafaloni, M.; Veneziano, G., Can spacetime be probed below the string size?, Phys Lett B, 216, 41 (1989)
[7] Garay, L. J., Quantum gravity and minimum length, Int J Mod Phys A, 10, 145 (1995)
[8] Hossenfelder, S., Signature in the Planck regime, Phys Lett B, 575, 85-99 (2003) · Zbl 1029.83501
[9] Nozari, K.; Karami, M., Minimal length and the generalized Dirac equation, Mod Phys Lett A, 20, 3095-3104 (2005) · Zbl 1082.83509
[10] Nozari, K., Some aspects of Planck scale quantum optics, Phys Lett B, 629, 41-52 (2005) · Zbl 1247.81689
[11] Nozari, K.; Mehdipour, S. H., Gravitational uncertainty and black hole remnants, Mod Phys Lett A, 20, 2937-2948 (2005)
[12] Harbach, U.; Hossenfelder, S., The Casimir effect in the presence of a minimal length, Phys Lett B, 632, 379-383 (2006)
[13] Akhoury, R.; Yao, Y.-P., Minimal length uncertainty relation and the hydrogen spectrum, Phys Lett B, 572, 37-42 (2003) · Zbl 1031.81530
[14] Dadic, I., Harmonic oscillator with minimal length uncertainty relations and ladder operators, Phys Rev D, 67, 087701 (2003)
[15] Chang, L. N., The effect of the minimal length uncertainty relation on the density of states and the cosmological constant problem, Phys Rev D, 65, 125028 (2002)
[16] Lubo, M., Quantum minimal length and transplanckian photons, Phys Rev D, 61, 124009 (2000)
[17] Kempf, A., Hilbert space representation of the minimal length uncertainty relation, Phys Rev D, 52, 1108-1118 (1995)
[18] Kempf, A.; Mangano, G., Minimal length uncertainty relation and ultraviolet regularisation, Phys Rev D, 55, 7909-7920 (1997)
[19] Hossenfelder, S., Running coupling with minimal length, Phys Rev D, 70, 105003 (2004)
[20] Ashoorioon, A., Minimum length cutoff in inflation and uniqueness of the action, Phys Rev D, 71, 023503 (2005)
[21] Reuter, M.; Schwindt, J.-M., A minimal length from the cutoff modes in asymptotically safe quantum gravity, JHEP, 0601, 070 (2006)
[22] Maggiore, M., Quantum groups, gravity, and the generalized uncertainty principle, Phys Rev D, 49, 5182-5187 (1994)
[23] Maggiore, M., The algebraic structure of the generalized uncertainty principle, Phys Lett B, 319, 83-86 (1993)
[24] Castro, C., String theory, scale relativity and the generalized uncertainty principle, Found Phys Lett, 10, 273-293 (1997)
[25] Seiberg, N.; Witten, E., String theory and noncommutative geometry, JHEP, 9909, 032 (1999)
[26] Connes, A., A short survey of noncommutative geometry, J Math Phys, 41, 3832-3866 (2000) · Zbl 0974.58008
[27] Castro, C., Noncommutative geometry, negative probabilities and Cantorian-Fractal spacetime, Chaos, Solitons & Fractals, 12, 101-104 (2001) · Zbl 1040.83513
[28] El Naschie, M. S., On the uncertainty of Cantorian geometry and the two-slit experiment, Chaos, Solitons & Fractals, 9, 3, 517-529 (1998) · Zbl 0935.81009
[29] El Naschie, M. S., Remarks on superstrings, fractal gravity, Nagaswa’s diffusion and Cantorian spacetime, Chaos, Solitons & Fractals, 8, 11, 1873 (1997) · Zbl 0934.83049
[30] Amelino-Camelia, G., Gravity-wave interferometers as probes of a low-energy effective quantum gravity, Phys Rev D, 62, 0240151 (2000)
[31] Sidharth, B. G., Fuzzy, noncommutative spacetime: a new paradigm for a new century. Fuzzy, noncommutative spacetime: a new paradigm for a new century, Frontiers of fundamental physics, vol. 4 (2001), Kluwer: Kluwer New York · Zbl 1022.81598
[32] Li, M., Fuzzy gravitons from uncertain spacetime, Phys Rev D, 63, 086002 (2001)
[34] Percival, I. P.; Strunz, W. T., Detection of space-time fluctuations by a model matter interferometer, Proc Roy Soc London A, 453, 431 (1996)
[36] El Naschie, M. S., The concepts of \(E\)-infinity: an elementary introduction to the Cantorian-fractal theory of quantum physics, Chaos, Solitons & Fractals, 22, 495-511 (2004) · Zbl 1063.81582
[37] El Naschie, M. S., A review of \(E\)-infinity theory and the mass spectrum of high energy particle physics, Chaos, Solitons & Fractals, 19, 209-236 (2004) · Zbl 1071.81501
[38] El Naschie, M. S., Scale relativity in Cantorian \(E^\infty\) space-time, Chaos, Solitons & Fractals, 11, 2391-2395 (2000) · Zbl 0989.83032
[39] El Naschie, M. S., Branching polymers and the fractal Cantorian spacetime, Chaos, Solitons & Fractals, 9, 135-141 (1998) · Zbl 1085.82513
[40] El Naschie, M. S., Towards a geometrical theory for the unification of all fundamental forces, Chaos, Solitons & Fractals, 11, 1459-1469 (2000) · Zbl 0971.83507
[41] El Naschie, M. S., On the unification of the fundamental forces and complex time in the \(E^\infty\) space, Chaos, Solitons & Fractals, 11, 1149-1162 (2000) · Zbl 1094.81574
[42] El Naschie, M. S., The fractal dimension of spacetime- remarks on theoretical derivation and experimental verification, Chaos, Solitons & Fractals, 9, 1211-1217 (1998) · Zbl 1047.81530
[43] El Naschie, M. S., On spaces with 26 dimensions, Chaos, Solitons & Fractals, 11, 1335-1338 (2000) · Zbl 0966.83030
[44] El Naschie, M. S., Quantum gravity, Clifford algebras, fuzzy set theory and the fundamental constants of nature, Chaos, Solitons & Fractals, 20, 437-450 (2004) · Zbl 1054.83502
[45] El Naschie, M. S., Small world network, \(E^\infty\) topology and the mass spectrum of high energy particles physics, Chaos, Solitons & Fractals, 19, 689-697 (2004) · Zbl 1135.82301
[46] El Naschie, M. S., The mass of the neutrinos via the energy of the cosmic background radiation of the VAK, Chaos, Solitons & Fractals, 18, 219-222 (2003) · Zbl 1075.83534
[47] Schiller, S., Experimental limits for low-frequency space-time fluctuations from ultrastable optical resonators, Phys Rev D, 69, 027504 (2004)
[48] Ng, Y. J.; van Dam, H., Measuring the foaminess of spacetime with gravity wave interferometers, Found Phys, 30, 795 (2000)
[50] Nozari, K.; Sefiedgar, A. S., Comparison of approaches to quantum correction of black hole thermodynamics, Phys Lett B, 635, 156-160 (2006) · Zbl 1247.83114
[52] Lubo, M., The fuzzy sphere: from the uncertainty relation to the stereographic projection, JHEP, 0405, 052 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.