zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A stochastic model for internal HIV dynamics. (English) Zbl 1132.92015
Summary: We analyse a stochastic model representing HIV internal virus dynamics. The stochasticity in the model is introduced by parameter perturbation which is a standard technique in stochastic population modelling. We show that the model established in this paper possesses non-negative solutions as this is essential in any population dynamics model. We also carry out analysis on the asymptotic behaviour of the model. We approximate one of the variables by a mean reverting process and find out the mean and variance of this process. Numerical simulations conclude the paper.

92C60Medical epidemiology
60H30Applications of stochastic analysis
Full Text: DOI
[1] Abell, M.; Braselton, J.; Braselton, L.: The effects of immunity and resistance on the development of AIDS, J. math. Anal. appl. 333, 8-23 (2007) · Zbl 1115.92040 · doi:10.1016/j.jmaa.2006.12.021
[2] Arnold, L.: Stochastic differential equations: theory and applications, (1972) · Zbl 0216.45001
[3] Bahar, A.; Mao, X.: Stochastic delay Lotka -- Volterra model, J. math. Anal. appl. 292, 364-380 (2004) · Zbl 1043.92034 · doi:10.1016/j.jmaa.2003.12.004
[4] Bonhoeffer, S.; Shaw, G.; May, R.; Nowak, M.: Virus dynamics and drug therapy, Proc. natl. Acad. sci. USA 94, 6971-6976 (1997)
[5] Braumann, C. A.: Variable effort harvesting models in random environments: generalisation to density-dependent noise intensities, Math. biosci. 177 -- 178, 229-245 (2002) · Zbl 1003.92027 · doi:10.1016/S0025-5564(01)00110-9
[6] Callaway, D.; Perelson, A.: HIV-1 infection and low steady state viral loads, Bull. math. Biol. 64, 29-64 (2002)
[7] Ciupe, M.; Bivort, B.; Bortz, D.; Nelson, P.: Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models, Math. biosci. 200, 1-27 (2006) · Zbl 1086.92022 · doi:10.1016/j.mbs.2005.12.006
[8] N. Dalal, Applications of stochastic and ordinary differential equations to HIV dynamics, Unpublished PhD thesis, University of Strathclyde, 2006
[9] Dalal, N.; Greenhalgh, D.; Mao, X.: A stochastic model of AIDS and condom use, J. math. Anal. appl. 325, 36-53 (2007) · Zbl 1101.92037 · doi:10.1016/j.jmaa.2006.01.055
[10] Di Mascio, M.; Ribeiro, R.; Markowitz, M.; Ho, D.; Perelson, A.: Modelling the long-term control of viraemia in HIV-1 infected patients treated with antiretroviral therapy, Math. biosci. 188, 47-62 (2004) · Zbl 1034.92014 · doi:10.1016/j.mbs.2003.08.003
[11] Ding, A.; Wu, H.: Relationships between antiviral treatment effects and biphasic viral decay rates in modelling HIV dynamics, Math. biosci. 160, 63-82 (1999) · Zbl 0944.92024 · doi:10.1016/S0025-5564(99)00021-8
[12] Friedman, A.: Stochastic differential equations and their applications, (1976) · Zbl 0323.60057
[13] Gard, T. C.: Introduction to stochastic differential equations, (1988) · Zbl 0628.60064
[14] Herz, A. V. M.; Bonhoeffer, S.; Anderson, R. M.; May, R. M.; Nowak, M. A.: Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay, Proc. natl. Acad. sci. USA 93, 7247-7251 (1996)
[15] Altes, H. Korthals; Wodarz, D.; Jansen, V.: The dual role of CD4 T helper cells in the infection dynamics of HIV and their importance for vaccination, J. theoret. Biol. 214, 633-646 (2002)
[16] Li, D.; Ma, W.: Asymptotic properties of a HIV-1 infection model with time delay, J. math. Anal. appl. 335, 683-691 (2007) · Zbl 1130.34052 · doi:10.1016/j.jmaa.2007.02.006
[17] Mao, X.: Stochastic differential equations and applications, (1997) · Zbl 0892.60057
[18] Mao, X.; Marion, G.; Renshaw, E.: Environmental Brownian noise suppresses explosions in population dynamics, Stochastic process. Appl. 97, 95-110 (2002) · Zbl 1058.60046 · doi:10.1016/S0304-4149(01)00126-0
[19] Mao, X.; Yuan, C.; Zou, J.: Stochastic differential delay equations of population dynamics, J. math. Anal. appl. 304, 296-320 (2005) · Zbl 1062.92055 · doi:10.1016/j.jmaa.2004.09.027
[20] Mechanisms of CD4 cell destruction, www.aidsmap.com, 2006
[21] Nelson, P.; Perelson, A.: Mathematical analysis of delay differential equation models of HIV-1 infection, Math. biosci. 179, 73-94 (2002) · Zbl 0992.92035 · doi:10.1016/S0025-5564(02)00099-8
[22] Nelson, P.; Murray, J.; Perelson, A.: A model of HIV-1 pathogenesis that includes an intracellular delay, Math. biosci. 163, 201-215 (2000) · Zbl 0942.92017 · doi:10.1016/S0025-5564(99)00055-3
[23] Nowak, M.; Bonhoeffer, S.; Shaw, G.; May, R.: Antiviral drug treatment: dynamics of resistance in free virus and infected cell populations, J. theoret. Biol. 184, 203-217 (1997)
[24] Perelson, A.; Neumann, A.; Markowitz, M.; Leonard, J.; Ho, D.: HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science 271, 1582-1586 (1996)
[25] Tuckwell, H. C.; Le Corfec, E.: A stochastic model for early HIV-1 population dynamics, J. theoret. Biol. 195, 451-463 (1998)
[26] Tuckwell, H. C.; Wan, F. Y. M.: Nature of equilibria and effects of drug treatments in some simple viral population dynamical models, IMA J. Math. appl. Med. biol. 17, 311-327 (2000) · Zbl 0966.92011
[27] Verotta, D.; Schaedeli, F.: Non-linear dynamics models characterising long-term virological data from AIDS clinical trials, Math. biosci. 176, 163-183 (2002) · Zbl 1015.92022 · doi:10.1016/S0025-5564(02)00090-1