Kohlhaase, Jan Invariant distributions on \(p\)-adic analytic groups. (English) Zbl 1133.11066 Duke Math. J. 137, No. 1, 19-62 (2007). This article is based on the author’s doctoral thesis [J. Kohlhaase, Invariant distributions on \(p\)-adic analytic groups, Münster: Univ. Münster, Fachbereich Mathematik und Informatik, Mathematisch-Naturwissenschaftliche Fakultät (Dissertation) (2005; Zbl 1088.11089)]. The work concerns \(p\)-adic distributions on a \(p\)-adic group \(G\). More precisely, \(G\) is the group of \(L\)-rational points of a split reductive group over \(L\), where \(L\) is a finite extension of \(\mathbb Q_p\). For a spherically complete extension \(K\) of \(L\), the author studies the algebra \(D(G,K)\) of locally analytic distributions on \(G\) with values in \(K\). From the summary: “We derive several explicit descriptions of the center of the algebra \(D(G,K)\) of locally analytic distributions on \(G\) with values in \(K\). The main result is a generalization of an isomorphism of Harish-Chandra which connects the center of \(D(G,K)\) with the algebra of Weyl-invariant, centrally supported distributions on a maximal torus of \(G\). This isomorphism is supposed to play a role in the theory of locally analytic representations of \(G\) as studied by P. Schneider and J. Teitelbaum.” Reviewer: Dubravka Ban (Carbondale) Cited in 16 Documents MSC: 11S80 Other analytic theory (analogues of beta and gamma functions, \(p\)-adic integration, etc.) 22E50 Representations of Lie and linear algebraic groups over local fields Keywords:\(p\)-adic distributions; \(p\)-adic groups; locally analytic distributions Citations:Zbl 1088.11089 PDF BibTeX XML Cite \textit{J. Kohlhaase}, Duke Math. J. 137, No. 1, 19--62 (2007; Zbl 1133.11066) Full Text: DOI Euclid References: [1] M. Andler, A. Dvorsky, and S. Sahi, Kontsevich quantization and invariant distributions on Lie groups , Ann. Sci. École Norm. Sup. (4) 35 (2002), 371–390. · Zbl 1009.22020 [2] L. Berger and C. Breuil, Towards a \(p\)-adic Langlands programme , [3] S. Bosch, U. GüNtzer, and R. Remmert, Non-Archimedean Analysis: A Systematic Approach to Rigid Analytic Geometry , Grundlehren Math. Wiss. 261 , Springer, Berlin, 1984. · Zbl 0539.14017 [4] N. Bourbaki, Éléments de mathématique, fasc. 36: Variétés differentielles et analytiques: Fascicule de résultats (Paragraphes 8–15) , Actualités Sci. Indust. 1347 , Hermann, Paris, 1971. · Zbl 0217.20401 [5] -, Éléments de mathématique, fasc. 37: Groupes et algèbres de Lie, chapitre 2: Algèbres de Lie libres; chapitre 3: Groupes de Lie , Actualités Sci. Indust. 1349 , Hermann, Paris, 1972. · Zbl 0244.22007 [6] -, Elements of Mathematics: Commutative Algebra , Hermann, Paris, 1972. · Zbl 0279.13001 [7] -, Topological Vector Spaces, chapters 1–5 , Springer, Berlin, 1987. · Zbl 0643.54012 [8] J. Dixmier, Algèbres enveloppantes , Cahiers Sci. 37 , Gauthiers-Villars, Paris, 1974. · Zbl 0308.17007 [9] J. D. Dixon, M. P. F. Du Sautoy, A. Mann, and D. Segal, Analytic Pro-\(p\) Groups , 2nd ed., Cambridge Stud. Adv. Math. 61 , Cambridge Univ. Press, Cambridge, 1999. · Zbl 0934.20001 [10] M. Duflo, Caractères des groupes et algèbres de Lie résolubles , Ann. Sci. École Norm. Sup. (4) 3 (1970), 23–74. · Zbl 0223.22016 [11] -, Opérateurs différentiels bi-invariants sur un groupe de Lie , Ann. Sci. École Norm. Sup. (4) 10 (1977), 265–288. · Zbl 0353.22009 [12] M. Emerton, On the interpolation of systems of eigenvalues attached to automorphic Hecke eigenforms , Invent. Math. 164 (2006), 1–84. · Zbl 1090.22008 [13] -, Locally analytic vectors in representations of locally \(p\)-adic analytic groups , to appear in Mem. Amer. Math. Soc., [14] C. T. FéAux De Lacroix, Einige Resultate über die topologischen Darstellungen \(p\)-adischer Liegruppen auf unendlich dimensionalen Vektorräumen über einem \(p\)-adischen Körper , Schriftenreihe Math. Inst. Univ. Münster 3. Ser. 23 , Univ. Münster, Münster 1999. · Zbl 0963.22009 [15] J. Fresnel and M. Van Der Put, Rigid Analytic Geometry and Its Applications , Progr. Math. 218 , Birkhäuser, Boston, 2004. · Zbl 1096.14014 [16] H. Frommer, The locally analytic principal series of split reductive groups , preprint, 2003. [17] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires , Mem. Amer. Math. Soc. 1955 , no. 16. · Zbl 0123.30301 [18] A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique, III: Étude cohomologique des faisceaux cohérents, I , Inst. Hautes Études Sci. Publ. Math. 11 (1961). [19] R. Kiehl, Theorem A und Theorem B in der nichtarchimedischen Funktionentheorie , Invent. Math. 2 (1967), 256–273. · Zbl 0202.20201 [20] U. KöPf, Über eigentliche Familien algebraischer Varietäten über affinoiden Räumen , Schr. Math. Inst. Univ. Münster (2) 7 (1974). · Zbl 0275.14006 [21] A. M. Robert, A Course in \(p\)-Adic Analysis , Grad. Texts in Math. 198 , Springer, New York, 2000. [22] P. Schneider, Nonarchimedean Functional Analysis , Springer Monogr. Math., Springer, Berlin, 2002. · Zbl 0998.46044 [23] -, \(p\)-Adische Analysis , lecture notes, Universität Münster, Münster, 2001. [24] P. Schneider and J. Teitelbaum, \(p\)-adic Fourier theory , Doc. Math. 6 (2001), 447–481. · Zbl 1028.11069 [25] -, Locally analytic distributions and \(p\)-adic representation theory , with applications to GL\(_2\), J. Amer. Math. Soc. 15 (2002), 443–468. JSTOR: · Zbl 1028.11071 [26] -, “\(p\)-adic boundary values” in Cohomologies \(p\)-adiques et applications arithmétiques, I , Astérisque 278 , Soc. Math. France, Montrouge, 2002, 51–125.; Correction in Cohomologies \(p\)-adiques et applications arithmétiques, III , Astérisque 295 , Soc. Math. France, Montrouge, 2004, 291–299. ; Mathematical Reviews (MathSciNet): [27] -, Algebras of \(p\)-adic distributions and admissible representations , Invent. Math. 153 (2003), 145–196. · Zbl 1028.11070 [28] -, Duality for admissible locally analytic representations , Represent. Theory 9 (2005), 297–326. · Zbl 1146.22301 [29] K.-Y. C. Sit, On bounded elements of linear algebraic groups , Trans. Amer. Math. Soc. 209 (1975), 185–198. · Zbl 0273.22005 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.