×

Some properties of Schur complements and diagonal-Schur complements of diagonally dominant matrices. (English) Zbl 1133.15020

The authors prove that the diagonal-Schur complement of a strictly doubly diagonally dominant matrix is a strictly generalized doubly diagonally dominant matrix. They provide the distribution of the real parts of eigenvalues of a diagonal-Schur complement of an \(H\)-matrix. They obtain a sufficient condition to ensure that the Schur complement of an \(r\)-diagonally dominant matrix is \(r\)-diagonally dominant.

MSC:

15B57 Hermitian, skew-Hermitian, and related matrices
15B48 Positive matrices and their generalizations; cones of matrices
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Liu, J.Z.; Huang, Y.Q.; Zhang, F.Z., The Schur complements of generalized doubly diagonally dominant matrices, Linear algebra appl., 378, 224-231, (2004) · Zbl 1051.15016
[2] Liu, J.Z.; Huang, Y.Q., Some properties on Schur complements of \(H\)-matrices and diagonally dominant matrices, Linear algebra appl., 389, 365-380, (2004) · Zbl 1068.15004
[3] Berman, A.; Plemmons, R.J., Nonnegative matrices in the mathematical sciences, (1979), Academic Press New York · Zbl 0484.15016
[4] Smith, R., Some interlacing properties of the Schur complement theory, Proceedings of the third auburn matrix theory conference, auburn university, auburn, alabamment of a Hermitian matrix, Linear algebra appl., 177, 137-144, (1992) · Zbl 0765.15007
[5] Li, B.; Tsatsomeros, M., Doubly diagonally dominant matrices, Linear algebra appl., 261, 221-235, (1997) · Zbl 0886.15027
[6] Fiedler, M.; Pták, V., On the matrices with non-positive off-diagonal elements and positive principal minors, Czechoslovak math. J., 12, 382-400, (1962) · Zbl 0131.24806
[7] Ikramov, K.D., Invariance of the Brauer diagonal dominance in Gaussian elimination, Moscow univ. comput. math. cybernet., N_{2}, 91-94, (1989) · Zbl 0723.65013
[8] Ouellette, D.V., Schur complements and statistics, Linear algebra appl., 36, 187-295, (1981) · Zbl 0455.15012
[9] Liu, J.Z.; Zhang, F.Z., Disc separation of the Schur complement of diagonally dominant matrices and determinantal bounds, SIAM J. matrix anal. appl., 27, 3, 665-674, (2005) · Zbl 1107.15022
[10] Liu, J.Z., Some inequalities for singular values and eigenvalues of generalized Schur complements of products of matrices, Linear algebra appl., 286, 209-221, (1999) · Zbl 0941.15017
[11] G.P.H. Styan, Schur complements and linear statistical models, in: S. Puntanen, T. Pukkila (Eds.), Proceedings of the First International Tampere Seminar on Linear Statistical Models and their Applications: Tampere, Finland, August-September 1983, Department of Mathematical Sciences, University of Tampere, 1985, pp. 37-75.
[12] Ando, T., Generalized Schur complements, Linear algebra appl., 27, 173-186, (1979) · Zbl 0412.15006
[13] Kress, R., Numerical analysis, (1998), Springer New York
[14] Johnson, C.R., Inverse M-matrices, Linear algebra appl., 47, 195-216, (1982) · Zbl 0488.15011
[15] Carlson, D.; Markham, T., Schur complements on diagonally dominant matrices, Czechoslovak math. J., 29, 104, 246-251, (1979) · Zbl 0423.15008
[16] Golub, G.H.; Van Loan, C.F., Matrix computations, (1996), Johns Hopkins University Press Baltimore · Zbl 0865.65009
[17] Horn, R.A.; Johnson, C.R., Matrix analysis, (1985), Cambridge University Press New York · Zbl 0576.15001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.