zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On certain analytic functions related with strongly close-to-convex functions. (English) Zbl 1133.30308
Summary: A class $\widetilde {T_k} (\rho, \alpha)$ of analytic functions defined in the unit disc is introduced. This class generalizes the concept of strongly close-to-convexity. A necessary condition, distortion results, a radius problem, coefficient results and Hankel determinant problem for this class are studied.

30C45Special classes of univalent and multivalent functions
Full Text: DOI
[1] Brannan, D. A.: On functions of bounded boundary rotation. Proc. edin. Math. soc. 2, 339-347 (1968/1969) · Zbl 0186.39602
[2] Brannan, D. A.; Clunie, J. G.; Kirwan, W. E.: On the coefficient problem for functions of bounded boundary rotation. Ann. acad. Sci. fenn. Series AI math. 523, 1-18 (1973) · Zbl 0257.30011
[3] Golusin, G. M.: On distortion theorem and coefficients of univalent functions. Math. sb. 19, 183-203 (1946) · Zbl 0063.01668
[4] G.M. Golusin, Geometrische Funktiontheorie, Berlin, 1957.
[5] Goodman, A. W.: On close-to-convex functions of a higher order. Ann. univ. Sci. Budapest eotous sect. Math. 25, 17-30 (1972) · Zbl 0247.30008
[6] Hayman, W. K.: On functions with positive real part. J. London math. Soc. 36, 34-48 (1961) · Zbl 0097.06103
[7] Kaplan, W.: Close-to-convex schlicht functions. Michigan math. J. 1, 169-185 (1952) · Zbl 0048.31101
[8] Noor, K. Inayat: On Hankel determinants for close-to-convex functions. Inter. J. Math. math. Sci. 3, 477-481 (1980) · Zbl 0443.30015
[9] Noor, K. Inayat: Higher order close-to-convex functions. Math. japonica 37, 1-8 (1992) · Zbl 0745.30016
[10] Padmanabhan, K.; Parvatham, R.: Properties of a class of functions with bounded boundary rotation. Ann. polon. Math. 31, 311-323 (1975) · Zbl 0337.30009
[11] Pommerenke, Ch.: On starlike and close-to-convex functions. Proc. London math. Soc. 13, 290-304 (1963) · Zbl 0113.28901
[12] Pommerenke, Ch.: On close-to-convex analytic functions. Trans. amer. Math. soc. 114, 176-186 (1965) · Zbl 0132.30204
[13] Pommerenke, Ch.: On the coefficients and Hankel determinants of univalent functions. J. London math. Soc. 41, 111-122 (1965) · Zbl 0138.29801
[14] Pemmerenke, Ch.: Linear-invariente familien analytischer funktionen, I. Math. ann. 155, 108-154 (1964)