×

On the uniqueness of discontinuous solutions to the Degasperis-Procesi equation. (English) Zbl 1133.35028

The authors prove uniqueness within a class of discontinuous solutions to the nonlinear and third order dispersive Degasperis-Procesi equation \[ \partial_t u-\partial_{txx}^{3}u+4u\partial_x u=3\partial_{x}u\partial_{xx}^{2}u+u\partial_{xxx}^{3}u. \] In a recent paper, the same authors proved for this equation the existence and uniqueness of \(L^1\cap BV\) weak solutions satisfying an infinite family of Kružkov-type entropy inequalities. The purpose of this paper is to replace the Kružkov-type entropy inequalities by an Oleǐnik-type estimate and to prove the uniquess via a nonlocal adjoint problem. An implication is that a shock wave in an entropy weak solution to the Degasperis-Procesi equation is admissible only if it jumps down in value.

MSC:

35G25 Initial value problems for nonlinear higher-order PDEs
35L05 Wave equation
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
35L65 Hyperbolic conservation laws
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Camassa, R.; Holm, D. D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 11, 1661-1664 (1993) · Zbl 0972.35521
[2] Coclite, G. M.; Holden, H.; Karlsen, K. H., Well-posedness for a parabolic-elliptic system, Discrete Contin. Dyn. Syst., 13, 3, 659-682 (2005) · Zbl 1082.35056
[3] Coclite, G. M.; Karlsen, K. H., On the well-posedness of the Degasperis-Procesi equation, J. Funct. Anal., 233, 60-91 (2006) · Zbl 1090.35142
[5] Constantin, A.; Molinet, L., Global weak solutions for a shallow water equation, Comm. Math. Phys., 211, 1, 45-61 (2000) · Zbl 1002.35101
[6] Degasperis, A.; Holm, D. D.; Hone, A. N.W., Integrable and non-integrable equations with peakons, (Nonlinear Physics: Theory and Experiment, vol. II. Nonlinear Physics: Theory and Experiment, vol. II, Gallipoli, 2002 (2003), World Scientific: World Scientific River Edge, NJ), 37-43 · Zbl 1053.37039
[7] Degasperis, A.; Holm, D. D.; Hone, A. N.W., A new integrable equation with peakon solutions, Teoret. Mat. Fiz., 133, 2, 170-183 (2002)
[8] Degasperis, A.; Procesi, M., Asymptotic integrability, (Symmetry and Perturbation Theory. Symmetry and Perturbation Theory, Rome, 1998 (1999), World Scientific: World Scientific River Edge, NJ), 23-37 · Zbl 0963.35167
[9] Fellner, K.; Schmeiser, C., Burgers-Poisson: A nonlinear dispersive model equation, SIAM J. Appl. Math., 64, 5, 1509-1525 (2004), (electronic) · Zbl 1053.35092
[10] Holm, D. D.; Staley, M. F., Wave structure and nonlinear balances in a family of evolutionary PDEs, SIAM J. Appl. Dyn. Syst., 2, 3, 323-380 (2003), (electronic) · Zbl 1088.76531
[11] Kawashima, S.; Nishibata, S., Shock waves for a model system of the radiating gas, SIAM J. Math. Anal., 30, 1, 95-117 (1999), (electronic) · Zbl 0924.35082
[12] Kružkov, S. N., First order quasi-linear equations in several independent variables, Math. USSR Sbornik, 10, 2, 217-243 (1970) · Zbl 0215.16203
[13] Lattanzio, C.; Marcati, P., Global well-posedness and relaxation limits of a model for radiating gas, J. Differential Equations, 190, 2, 439-465 (2003) · Zbl 1052.35126
[14] LeFloch, P.; Xin, Z. P., Uniqueness via the adjoint problems for systems of conservation laws, Comm. Pure Appl. Math., 46, 11, 1499-1533 (1993) · Zbl 0797.35116
[15] Liu, H.; Tadmor, E., Critical thresholds in a convolution model for nonlinear conservation laws, SIAM J. Math. Anal., 33, 4, 930-945 (2001), (electronic) · Zbl 1002.35085
[17] Lundmark, H.; Szmigielski, J., Multi-peakon solutions of the Degasperis-Procesi equation, Inverse Problems, 19, 6, 1241-1245 (2003) · Zbl 1041.35090
[18] Lundmark, H.; Szmigielski, J., Degasperis-Procesi peakons and the discrete cubic string, IMRP Int. Math. Res. Pap. (2), 53-116 (2005) · Zbl 1178.37105
[19] Mustafa, O. G., A note on the Degasperis-Procesi equation, J. Nonlinear Math. Phys., 12, 1, 10-14 (2005) · Zbl 1067.35078
[20] Oleĭnik, O. A., Discontinuous solutions of non-linear differential equations, Amer. Math. Soc. Transl. Ser. 2, 26, 95-172 (1963) · Zbl 0131.31803
[21] Serre, D., \(L^1\)-stability of constants in a model for radiating gases, Commun. Math. Sci., 1, 1, 197-205 (2003) · Zbl 1080.76047
[22] Smoller, J., Shock Waves and Reaction-Diffusion Equations, Grundlehren Math. Wiss., vol. 258 (1994), Springer-Verlag: Springer-Verlag New York · Zbl 0807.35002
[23] Tadmor, E., Local error estimates for discontinuous solutions of nonlinear hyperbolic equations, SIAM J. Numer. Anal., 28, 4, 891-906 (1991) · Zbl 0732.65084
[24] Whitham, G. B., Linear and Nonlinear Waves (1974), Wiley-Interscience: Wiley-Interscience New York · Zbl 0373.76001
[25] Yin, Z., Global existence for a new periodic integrable equation, J. Math. Anal. Appl., 283, 1, 129-139 (2003) · Zbl 1033.35121
[26] Yin, Z., On the Cauchy problem for an integrable equation with peakon solutions, Illinois J. Math., 47, 3, 649-666 (2003) · Zbl 1061.35142
[27] Yin, Z., Global solutions to a new integrable equation with peakons, Indiana Univ. Math. J., 53, 4, 1189-1209 (2004) · Zbl 1062.35094
[28] Yin, Z., Global weak solutions for a new periodic integrable equation with peakon solutions, J. Funct. Anal., 212, 1, 182-194 (2004) · Zbl 1059.35149
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.