Godoy, T.; Kaufmann, U. On the existence of positive solutions for periodic parabolic sublinear problems. (English) Zbl 1133.35380 Abstr. Appl. Anal. 2003, No. 17, 975-984 (2003). Summary: We give necessary and sufficient conditions for the existence of positive solutions for sublinear Dirichlet periodic parabolic problems \(Lu=g(x,t,u)\) in \(\Omega\times\mathbb R\) (where \(\Omega \subset\mathbb R^N\) is a smooth bounded domain) for a wide class of Carathéodory functions \(g:\Omega\times\mathbb R\times [0,\infty)\to\mathbb R\) satisfying some integrability and positivity conditions. Cited in 3 Documents MSC: 35K20 Initial-boundary value problems for second-order parabolic equations 35P05 General topics in linear spectral theory for PDEs 35B10 Periodic solutions to PDEs 35B50 Maximum principles in context of PDEs Keywords:Dirichlet periodic parabolic problems PDFBibTeX XMLCite \textit{T. Godoy} and \textit{U. Kaufmann}, Abstr. Appl. Anal. 2003, No. 17, 975--984 (2003; Zbl 1133.35380) Full Text: DOI EuDML