zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Boundedness and exponential stability for nonautonomous cellular neural networks with reaction-diffusion terms. (English) Zbl 1133.35386
Summary: Employing Lyapunov functional method, we analyze the ultimate boundedness and global exponential stability of a class of reaction-diffusion cellular neural networks with time-varying delays. Some new criteria are obtained to ensure ultimate boundedness and global exponential stability of delayed reaction-diffusion cellular neural networks (DRCNNs). Without assuming that the activation functions $f_{ijl}(\cdot )$ are bounded, the results extend and improve the earlier publications.

MSC:
35K57Reaction-diffusion equations
35B35Stability of solutions of PDE
92B20General theory of neural networks (mathematical biology)
35R10Partial functional-differential equations
WorldCat.org
Full Text: DOI
References:
[1] Chua, L. O.; Yang, L.: Cellular neural networks: theory. IEEE trans circuits syst I 35, 1257-1272 (1988) · Zbl 0663.94022
[2] Chua, L. O.; Yang, L.: Cellular neural networks: applications. IEEE trans circuits syst I 35, 1273-1290 (1988)
[3] Roska T, Boros T, Thiran P, Chua LO. Detecting simple motion using cellular neural networks. In: Proc 1990 IEEE int workshop on cellular neural networks and their applications, 1990. p. 127-38.
[4] Chua LO, Roska T. Cellular neural networks with nonlinear and delay-type template elements. In: Proc 1990 IEEE int workshop on cellular neural networks and their applications, 1990. p. 12-25.
[5] Cao, J. D.; Lin, Y. P.: Stability of a class of neural network models with delay. Appl math mech 20, 851-855 (1999) · Zbl 0936.34063
[6] Cao, J. D.; Li, J. B.: The stability in neural networks with interneuronal transmission delays. Appl math mech 19, 425-430 (1998) · Zbl 0908.92003
[7] Cao, J. D.: On stability of delayed cellular neural networks. Phys lett A 261, 303-308 (1999) · Zbl 0935.68086
[8] Gopalsamy, K.; He, X. Z.: Stability in asymmetric Hopfield nets with transmission delays. Physica D 76, 344-358 (1994) · Zbl 0815.92001
[9] Liao, X.; Liao, Y.: Stability of Hopfield-type neural networks II. Sci China ser A 40, No. 8, 813-816 (1997) · Zbl 0886.68115
[10] Cao, J. D.; Wang, J.: Global asymptotic and robust stability of recurrent neural networks with time delays. IEEE trans circuits syst I: Regular papers 52, No. 2, 417-426 (2005)
[11] Cao, J. D.: On exponential stability and periodic solutions of cnns with delays. Phys lett A 267, 312-318 (2000) · Zbl 1098.82615
[12] Cao, J. D.: Periodic oscillation and exponential stability of delayed cnns. Phys lett A 270, 157-163 (2000)
[13] Cao, J. D.: Global exponential stability and periodic solutions of delayed cellular neural networks. J comput syst sci 60, 38-46 (2000) · Zbl 0988.37015
[14] Lou, X. Y.; Cui, B. T.: Robust stability of uncertain impulsive Hopfield neural networks with delays. Impuls dynam syst appl, DCDIS proc 3, 114-119 (2005)
[15] Zhou, D. M.; Cao, J. D.: Globally exponential stability conditions for cellular neural networks with time-varying delays. Appl math comput 131, 487-496 (2002) · Zbl 1034.34093
[16] Cao, J. D.: New results concerning exponential stability and periodic solutions of delayed cellular neural networks. Phys lett A 307, No. 2-3, 136-147 (2003) · Zbl 1006.68107
[17] Cao, J. D.: Global stability conditions for delayed CNNS. IEEE trans circuits syst I 48, 1330-1333 (2001) · Zbl 1006.34070
[18] Liang, J. L.; Cao, J. D.: Boundedness and stability for recurrent neural networks with variable coefficients and time-varying delays. Phys lett A 318, 53-64 (2003) · Zbl 1037.82036
[19] Liao, X.; Fu, Y.; Gao, J.; Zhao, X.: Stability of Hopfield neural networks with reaction-diffusion terms. Acta electron sinica 28, No. 1, 78-80 (2000)
[20] Cui, B. T.; Lou, X. Y.: Global asymptotic stability of BAM neural networks with distributed delays and reaction-diffusion terms. Chaos, solitons & fractals 27, No. 5, 1347-1354 (2006) · Zbl 1084.68095
[21] Liang, J. L.; Cao, J. D.: Global exponential stability of reaction-diffusion recurrent neural networks with time-varying delays. Phys lett A 314, 434-442 (2003) · Zbl 1052.82023
[22] Song, Q. K.; Zhao, Z. J.; Li, Y. M.: Global exponential stability of BAM with distributed delays and reaction-diffusion terms. Phys lett A 335, 213-225 (2005) · Zbl 1123.68347
[23] Liao, X.; Li, J.: Stability in gilpin-ayala competition models with diffusion. Nonlinear anal TMA 28, No. 10, 1751-1758 (1997) · Zbl 0872.35054
[24] Hastings, A.: Global stability in Lotka-Volterra systems with diffusion. J math biol 6, No. 2, 163-168 (1978) · Zbl 0393.92013
[25] Rothe, F.: Convergence to the equilibrium state in the Volterra-Lotka diffusion equations. J math biol 3, 319-324 (1976) · Zbl 0355.92013
[26] Jiang, H. J.; Li, Z. M.; Teng, Z. D.: Boundedness and stability for nonautonomous cellular neural networks with delay. Phys lett A 306, 313-325 (2003) · Zbl 1006.68059
[27] Zhang, Q.; Wei, X. P.; Xu, J.: Delay-dependent exponential stability of cellular neural networks with time-varying delays. Chaos, solitons & fractals 23, No. 4, 1363-1369 (2005) · Zbl 1094.34055
[28] Zhang, Q.; Wei, X. P.; Xu, J.: Stability analysis for cellular neural networks with variable delays. Chaos, solitons & fractals 28, No. 2, 331-336 (2006) · Zbl 1084.34068
[29] Burton, T. A.: Stability and periodic solutions of ordinary and functional differential equations. (1985) · Zbl 0635.34001