Li, Xiaochun Uniform bounds for the bilinear Hilbert transforms. II. (English) Zbl 1133.42022 Rev. Mat. Iberoam. 22, No. 3, 1069-1126 (2006). Author’s abstract: We continue the investigation initiated in [L. Grafakos and X. Li, Ann. of Math. (2) 159, 889–933 (2004; Zbl 1071.44004)] of uniform \(L^{p}\) bounds for the family of bilinear Hilbert transforms \[ H_{\alpha,\beta} (f,g)(x) = \text{p.v.} \int_{\mathbb{R}} f(x-\alpha t) g(x-\beta t) \frac{dt}{t} \,. \]In this work we show that \(H_{\alpha,\beta}\) map \(L^{p_1}(\mathbb R)\times L^{p_2}(\mathbb R)\) into \(L^p(\mathbb R)\) uniformly in the real parameters \(\alpha\), \(\beta\) satisfying \(|\frac{\alpha}{\beta}-1|\geq c > 0\) when \(1 < p_1, p_2 < 2\) and \(\frac{2}{3} < p= \frac{p_1p_2}{p_1+p_2} < \infty\). As a corollary we obtain \(L^p \times L^\infty \to L^p\) uniform bounds in the range \(4/3 < p < 4 \) for the \(H_{1,\alpha}\)’s when \(\alpha\in [0,1)\). Reviewer: Xuan Thinh Duong (Sydney) Cited in 1 ReviewCited in 25 Documents MSC: 42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.) 42B25 Maximal functions, Littlewood-Paley theory 46B70 Interpolation between normed linear spaces 47B38 Linear operators on function spaces (general) Citations:Zbl 1071.44004 PDF BibTeX XML Cite \textit{X. Li}, Rev. Mat. Iberoam. 22, No. 3, 1069--1126 (2006; Zbl 1133.42022) Full Text: DOI Euclid EuDML References: [1] Calderón, A.: Commutators of singular integral operators. Proc. Nat. Acad. Sci. U.S.A. 53 (1977), 1092-1099. · Zbl 0151.16901 [2] Calderón, A. P. and Zygmund, A.: On singular integrals. Amer. J. Math. 78 (1956), 289-309. JSTOR: · Zbl 0072.11501 [3] Carleson, L.: On convergence and growth of partials sumas of Fourier series. Acta Math. 116 (1966), 135-157. · Zbl 0144.06402 [4] Coifman, R. R. and Meyer, Y.: On commutators of singular integrals and bilinear singular integrals. Trans. Amer. Math. Soc. 212 (1975), 315-331. · Zbl 0324.44005 [5] Coifman, R. R. and Meyer, Y.: Commutateurs d’ intégrales singulières et opérateurs multilinéaires. Ann. Inst. Fourier (Grenoble) 28 (1978), 177-202. · Zbl 0368.47031 [6] Fefferman, C.: Pointwise convergence of Fourier series. Ann. of Math. (2) 98 (1973), 551-571. JSTOR: · Zbl 0268.42009 [7] Fefferman, C. and Stein, E. M.: Some maximal inequalities. Amer. J. Math. 93 (1971), 107-115. JSTOR: · Zbl 0222.26019 [8] Grafakos, L. and Li, X.: Uniform bounds for the bilinear Hilbert transforms. I. Ann. of Math. (2) 159 (2004), 889-933. JSTOR: · Zbl 1071.44004 [9] Grafakos, L. and Torres, R.: Multilinear Calderón-Zygmund theory. Adv. Math. 165 (2002), no. 1, 124-164. · Zbl 1032.42020 [10] Hunt R. A.: On the convergence of Fourier Series. In 1968 Orthogonal Expansions and their Continuous Analogues (Proc. Conf. Edwardsville, 1967) , 235-255. Southern Illinois Univ. Press, Carbondale Ill. [11] Lacey, M. T. and Thiele, C. M.: \(L^p\) estimates on the bilinear Hilbert transform for \(2<p<\infty\). Ann. of Math. (2) 146 (1997), 693-724. JSTOR: · Zbl 0914.46034 [12] Lacey, M. T. and Thiele, C. M.: On Calderón’s conjecture. Ann. of Math. (2) 149 (1999), 475-496. JSTOR: · Zbl 0934.42012 [13] Stein, E. M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals . Princeton Mathematical Series 43 . Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ, 1993. · Zbl 0821.42001 [14] Thiele, C. M.: On the Bilinear Hilbert Transform . Habilitationsschrift, Universität Kiel, 1998. · Zbl 0915.42011 [15] Thiele, C. M.: A uniform estimate. Ann. of Math. (2) 156 (2002), 519-563. JSTOR: · Zbl 1038.42019 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.