Fryzlewicz, Piotr; Sapatinas, Theofanis; Subba Rao, Suhasini Normalized least-squares estimation in time-varying ARCH models. (English) Zbl 1133.62071 Ann. Stat. 36, No. 2, 742-786 (2008). Summary: We investigate the time-varying ARCH (tvARCH) process. It is shown that it can be used to describe the slow decay of the sample autocorrelations of the squared returns often observed in financial time series, which warrants the further study of parameter estimation methods for the model. Since the parameters are changing over time, a successful estimator needs to perform well for small samples. We propose a kernel normalized-least-squares (kernel-NLS) estimator which has a closed form, and thus outperforms the previously proposed kernel quasi-maximum likelihood (kernel-QML) estimator for small samples. The kernel-NLS estimator is simple, works under mild moment assumptions and avoids some of the parameter space restrictions imposed by the kernel-QML estimator. Theoretical evidence shows that the kernel-NLS estimator has the same rate of convergence as the kernel-QML estimator. Due to the kernel-NLS estimator’s ease of computation, computationally intensive procedures can be used. A prediction-based cross-validation method is proposed for selecting the bandwidth of the kernel-NLS estimator. Also, we use a residual-based bootstrap scheme to bootstrap the tvARCH process. The bootstrap sample is used to obtain pointwise confidence intervals for the kernel-NLS estimator. It is shown that distributions of the estimator using the bootstrap and the “true” tvARCH estimator asymptotically coincide. We illustrate our estimation method on a variety of currency exchange and stock index data for which we obtain both good fits to the data and accurate forecasts. Cited in 30 Documents MSC: 62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH) 62P20 Applications of statistics to economics 62G09 Nonparametric statistical resampling methods 62G20 Asymptotic properties of nonparametric inference 62G15 Nonparametric tolerance and confidence regions 62G05 Nonparametric estimation Keywords:cross-validation; (G)ARCH models; kernel smoothing; locally stationary models × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Bera, A. K. and Higgins, M. L. (1993). ARCH models: Properties, estimation and testing. J. Econom. Surv. 7 305-366. [2] Bhattacharya, R. N., Gupta, V. K. and Waymire, E. (1983). The Hurst effect under trend. J. Appl. Probab. 20 649-662. JSTOR: · Zbl 0526.60027 · doi:10.2307/3213900 [3] Bickel, P. J. and Freedman, D. A. (1981). Some asymptotic theory for the bootstrap. Ann. Statist. 9 1196-1217. · Zbl 0449.62034 · doi:10.1214/aos/1176345637 [4] Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. J. Econometrics 31 307-327. · Zbl 0865.62085 · doi:10.1016/S0304-4076(95)01749-6 [5] Bose, A. and Mukherjee, K. (2003). Estimating the ARCH parameters by solving linear equations. J. Time Ser. Anal. 24 127-136. · Zbl 1113.62095 · doi:10.1111/1467-9892.00296 [6] Dahlhaus, R. (1997). Fitting time series models to nonstationary processes. Ann. Statist. 25 1-37. · Zbl 0871.62080 · doi:10.1214/aos/1034276620 [7] Dahlhaus, R. and Subba Rao, S. (2006). Statistical inference for time-varying ARCH processes. Ann. Statist. 34 1075-1114. · Zbl 1113.62099 · doi:10.1214/009053606000000227 [8] Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50 987-1008. JSTOR: · Zbl 0491.62099 · doi:10.2307/1912773 [9] Fan, J. and Yao, Q. (2003). Nonlinear Time Series . Springer, New York. · Zbl 1014.62103 [10] Fan, J., Jiang, J., Zhang, C. and Zhou, Z. (2003). Time-dependent diffusion models for term structure dynamics. Statist. Sinica 13 965-992. · Zbl 1065.62177 [11] Franke, J. and Kreiss, J.-P. (1992). Bootstrapping stationary autoregressive moving average models J. Time Ser. Anal. 13 297-317. · Zbl 0787.62092 · doi:10.1111/j.1467-9892.1992.tb00109.x [12] Fryzlewicz, P., Sapatinas, T. and Subba Rao, S. (2006). A Haar-Fisz technique for locally stationary volatility estimation. Biometrica 93 687-704. · Zbl 1109.62095 · doi:10.1093/biomet/93.3.687 [13] Giraitis, L., Kokoszka, P. and Leipus, R. (2000). Stationary ARCH models: Dependence structure and central limit theorem. Econometric Theory 16 3-22. JSTOR: · Zbl 0986.60030 · doi:10.1017/S0266466600161018 [14] Giraitis, L., Leipus, R. and Surgailis, D. (2005). Recent advances in ARCH modelling. In Long Memory in Economics (A. Kirman and G. Teyssiere, eds.) 3-38. Springer, Berlin. · Zbl 1180.62121 · doi:10.1007/978-3-540-34625-8_1 [15] Giraitis, L. and Robinson, P. (2001). Whittle estimation of GARCH models. Econometric Theory 17 608-631. JSTOR: · Zbl 1051.62074 · doi:10.1017/S0266466601173056 [16] Hall, P. and Heyde, C. (1980). Martingale Limit Theory and its Applications . Academic Press, New York. · Zbl 0462.60045 [17] Hart, J. (1996). Some automated methods for smoothing time-dependent data. J. Nonparametr. Statist. 6 115-142. · Zbl 0878.62031 · doi:10.1080/10485259608832667 [18] Horváth, L., Kokoszka, P. and Teyssiére, G. (2001). Empirical process of the squared residuals of an ARCH process. Ann. Statist. 29 445-469. · Zbl 1012.62053 · doi:10.1214/aos/1009210548 [19] Horváth, L. and Liese, F. (2004). L p -estimators in ARCH models. J. Statist. Plann. Inference 119 277-309. · Zbl 1032.62084 · doi:10.1016/S0378-3758(02)00488-3 [20] Ling, S. (2007). Self-weighted and local quasi-maximum likelihood estimators for ARMA-GARCH/IGARCH models. J. Econom. 140 849-873. · Zbl 1247.91142 · doi:10.1016/j.jeconom.2006.07.016 [21] Mercurio, D. and Spokoiny, V. (2004a). Statistical inference for time-inhomogeneous volatility models. Ann. Statist. 32 577-602. · Zbl 1091.62103 · doi:10.1214/009053604000000102 [22] Mercurio, D. and Spokoiny, V. (2004b). Estimation of time dependent volatility via local change point analysis. · Zbl 1091.62103 [23] Mikosch, T. and Stărică, C. (2000). Is it really long memory we see in financial returns? In Extremes and Integrated Risk Management (P. Embrechts, ed.) 149-168. Risk Books, London. [24] Mikosch, T. and Stărică, C. (2003). Long-range dependence effects and ARCH modelling. In Theory and Applications of Long Range Dependence (P. Doukhan, G. Oppenheim and M. S. Taqqu, eds.) 439-459. Birkhäuser, Boston. · Zbl 1026.62113 [25] Mikosch, T. and Stărică, C. (2004). Non-stationarities in financial time series, the long-range dependence, and the IGARCH effects. Rev. Econ. Statist. 86 378-390. [26] Paparoditis, E. and Politis, D. N. (2007). Resampling and subsampling for financial time series. In Handbook of Financial Time Series (T. Andersen, R. A. Davis, J.-P. Kreiss and T. Mikosch, eds.). Springer, New York. · Zbl 1178.62046 [27] Shephard, N. (1996). Statistical aspects of ARCH and stochastic volatility. In Time Series Models in Econometric, Finance and Other Fields (D. R. Cox, D. V. Hinkley and O. E. Barndorff-Nielsen, eds.) 1-67. Chapman and Hall, London. [28] Straumann, D. (2005). Estimation in Conditionally Heteroscedastic Time Series Models . Springer, New York. · Zbl 1086.62103 [29] Stărică, C. (2003). Is GARCH(1, 1) as good a model as the Nobel prize accolades would imply? [30] Stărică, C. and Granger, C. W. J. (2005). Non-stationarities in stock returns. Rev. Econ. Statist. 87 503-522. [31] Subba Rao, S. (2006). On some nonstationary, nonlinear random processes and their stationary approximations. Adv. in Appl. Probab. 38 1153-1172. · Zbl 1103.62085 · doi:10.1239/aap/1165414596 [32] Taylor, S. C. (1986). Modelling Financial Time Series . Wiley, Chichester. · Zbl 1130.91345 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.