×

Likelihood based inference for monotone response models. (English) Zbl 1133.62328

Summary: The behavior of maximum likelihood estimates (MLEs) and the likelihood ratio statistic in a family of problems involving pointwise nonparametric estimation of a monotone function is studied. This class of problems differs radically from the usual parametric or semiparametric situations in that the MLE of the monotone function at a point converges to the truth at rate \(n^{1/3}\) (slower than the usual \(\sqrt{n}\) rate) with a non-Gaussian limit distribution. A framework for likelihood based estimation of monotone functions is developed and limit theorems describing the behavior of the MLEs and the likelihood ratio statistic are established. In particular, the likelihood ratio statistic is found to be asymptotically pivotal with a limit distribution that is no longer \(\chi^2\) but can be explicitly characterized in terms of a functional of Brownian motion. Applications of the main results are presented and potential extensions discussed.

MSC:

62G20 Asymptotic properties of nonparametric inference
62G08 Nonparametric regression and quantile regression
62G05 Nonparametric estimation
62E20 Asymptotic distribution theory in statistics

References:

[1] Banerjee, M. (2000). Likelihood ratio inference in regular and nonregular problems. Ph.D. dissertation, Univ. Washington.
[2] Banerjee, M. (2006). Likelihood based inference for monotone response models. Preprint. Available at www.stat.lsa.umich.edu/\~moulib/wilks3.pdf. · Zbl 1133.62328 · doi:10.1214/009053606000001578
[3] Banerjee, M. and Wellner, J. A. (2001). Likelihood ratio tests for monotone functions. Ann. Statist. 29 1699–1731. · Zbl 1043.62037 · doi:10.1214/aos/1015345959
[4] Brunk, H. D. (1970). Estimation of isotonic regression. In Nonparametric Techniques in Statistical Inference (M. L. Puri, ed.) 177–197. Cambridge Univ. Press, London.
[5] Diggle, P., Morris, S. and Morton-Jones, T. (1999). Case–control isotonic regression for investigation of elevation in risk around a point source. Stat. Med. 18 1605–1613.
[6] Groeneboom, P. (1987). Asymptotics for incomplete censored observations. Report 87-18, Mathematical Institute, Univ. Amsterdam.
[7] Groeneboom, P. (1989). Brownian motion with a parabolic drift and Airy functions. Probab. Theory Related Fields 81 79–109. · doi:10.1007/BF00343738
[8] Groeneboom, P. (1996). Lectures on inverse problems. In Lectures on Probability Theory and Statistics. Lecture Notes in Math. 1648 67–164. Springer, Berlin. · Zbl 0907.62042 · doi:10.1007/BFb0095675
[9] Groeneboom, P. and Wellner, J. A. (1992). Information Bounds and Nonparametric Maximum Likelihood Estimation. Birkhäuser, Basel. · Zbl 0757.62017
[10] Groeneboom, P. and Wellner, J. A. (2001). Computing Chernoff’s distribution. J. Comput. Graph. Statist. 10 388–400. JSTOR: · doi:10.1198/10618600152627997
[11] Huang, J. (1996). Efficient estimation for the proportional hazards model with interval censoring. Ann. Statist. 24 540–568. · Zbl 0859.62032 · doi:10.1214/aos/1032894452
[12] Huang, J. (2002). A note on estimating a partly linear model under monotonicity constraints. J. Statist. Plann. Inference 107 343–351. · Zbl 1095.62505 · doi:10.1016/S0378-3758(02)00262-8
[13] Huang, J. and Wellner, J. A. (1995). Estimation of a monotone density or monotone hazard under random censoring. Scand. J. Statist. 22 3–33. · Zbl 0827.62032
[14] Huang, Y. and Zhang, C.-H. (1994). Estimating a monotone density from censored observations. Ann. Statist. 22 1256–1274. · Zbl 0821.62016 · doi:10.1214/aos/1176325628
[15] Jongbloed, G. (1998). The iterative convex minorant algorithm for nonparametric estimation. J. Comput. Graph. Statist. 7 310–321. JSTOR: · doi:10.2307/1390706
[16] Mammen, E. (1991). Estimating a smooth monotone regression function. Ann. Statist. 19 724–740. · Zbl 0737.62038 · doi:10.1214/aos/1176348117
[17] Morton-Jones, T., Diggle, P. and Elliott, P. (1999). Investigation of excess environment risk around putative sources: Stone’s test with covariate adjustment. Stat. Med. 18 189–197.
[18] Mukerjee, H. (1988). Monotone nonparametric regression. Ann. Statist. 16 741–750. · Zbl 0647.62042 · doi:10.1214/aos/1176350832
[19] Murphy, S. A. and van der Vaart, A. W. (1997). Semiparametric likelihood ratio inference. Ann. Statist. 25 1471–1509. · Zbl 0928.62036 · doi:10.1214/aos/1031594729
[20] Murphy, S. A. and van der Vaart, A. W. (2000). On profile likelihood (with discussion). J. Amer. Statist. Assoc. 95 449–485. JSTOR: · Zbl 0995.62033 · doi:10.2307/2669386
[21] Prakasa Rao, B. L. S. (1969). Estimation of a unimodal density. Sankhyā Ser. A 31 23–36. · Zbl 0181.45901
[22] Robertson, T., Wright, F. T. and Dykstra, R. L. (1988). Order Restricted Statistical Inference . Wiley, Chichester. · Zbl 0645.62028
[23] Stone, R. A. (1988). Investigations of excess environmental risks around putative sources: Statistical problems and a proposed test. Stat. Med. 7 649–660.
[24] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes. With Applications to Statistics . Springer, New York. · Zbl 0862.60002
[25] van der Vaart, A. W. and Wellner, J. A. (2000). Preservation theorems for Glivenko–Cantelli and uniform Glivenko–Cantelli classes. In High Dimensional Probability II (E. Giné, D. M. Mason and J. A. Wellner, eds.) 115–133. Birkhäuser, Boston. · Zbl 0967.60037
[26] Wellner, J. A. (2003). Gaussian white noise models: Some results for monotone functions. In Crossing Boundaries : Statistical Essays in Honor of Jack Hall (J. E. Kolassa and D. Oakes, eds.) 87–104. IMS, Beachwood, OH. · Zbl 1255.62100 · doi:10.1214/lnms/1215092392
[27] Wellner, J. A. and Zhang, Y. (2000). Two estimators of the mean of a counting process with panel count data. Ann. Statist. 28 779–814. · Zbl 1105.62372 · doi:10.1214/aos/1015951998
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.