zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An efficient algorithm for solving fifth-order boundary value problems. (English) Zbl 1133.65052
Summary: We apply the homotopy perturbation method for solving fifth-order boundary value problems. The analytical results of the equations are obtained in terms of convergent series with easily computable components. Several examples are given to illustrate the efficiency and implementation of the homotopy perturbation method. Comparisons are made to confirm the reliability of the method.

65L10Boundary value problems for ODE (numerical methods)
34B15Nonlinear boundary value problems for ODE
45F05Systems of nonsingular linear integral equations
65R20Integral equations (numerical methods)
Full Text: DOI
[1] Caglar, H. N.; Caglar, S. H.; Twizell, E. E.: The numerical solution of fifth order boundary-value problems with sixth degree B-spline functions. Appl. math. Lett. 12, 25-30 (1999) · Zbl 0929.65048
[2] Davies, A. R.; Karageoghis, A.; Phillips, T. N.: Spectral glarkien methods for the primary two-point boundary-value problems in modeling viscelastic flows. Internat. J. Numer. methods engrg. 26, 647-662 (1988)
[3] Fyfe, D. J.: Linear dependence relations connecting equal interval nth degree splines and their derivatives. J. inst. Math. appl. 7, 398-406 (1971) · Zbl 0219.65010
[4] He, J. H.: Variational iteration method--a kind of nonlinear analytical technique: some examples. Internat. J. Nonlinear mech. 34, 699-708 (1999) · Zbl 05137891
[5] He, J. H.: Variational method for autonomous ordinary differential equations. Appl. math. Comput. 114, 115-123 (2000) · Zbl 1027.34009
[6] He, J. H.: Variational theory for linear magneto-electro-elasticity. Internat. J. Nonlinear sci. Numer. simul. 2, No. 4, 309-316 (2001) · Zbl 1083.74526
[7] He, J. H.: Variational principle for some nonlinear partial differential equations with variable coefficients. Chaos soliton fractals 19, No. 4, 847-851 (2004) · Zbl 1135.35303
[8] Inokuti, M.; Dekine, H.; Mura, T.: General use of the Lagrange multiplier in nonlinear mathematical physics. Variational methods in the mechanics of solids, 156-162 (1978)
[9] Karageoghis, A.; Phillips, T. N.; Davies, A. R.: Spectral collocation methods for the primary two-point boundary-value problems in modeling viscelastic flows. Internat. J. Numer. methods engrg. 26, 805-813 (1998)
[10] G.L. Liu, New research directions in singular perturbation theory: artificial parameter approach and inverse-perturbation technique, in: Proceeding of the Conference of the 7th Modern Mathematics and Mechanics, Shanghai, 1997
[11] Liao, S. J.: An approximate solution technique not depending on small parameter: a special example. Internat. J. Nonlinear mech. 30, No. 3, 371-380 (1995) · Zbl 0837.76073
[12] Liao, S. J.: Boundary element method for general nonlinear differential operators. Eng. anal. Boundary ement. 20, No. 2, 91-99 (1997)
[13] Nayfeh, A. H.: Introduction to perturbation technique. (1981) · Zbl 0449.34001
[14] Nayfeh, A. H.: Problems in perturbation. (1985) · Zbl 0573.34001
[15] M. Aslam Noor, S.T. Mohyud-Din, Variational iteration technique for solving fifth-order boundary value problems, 2006 (preprint)
[16] Siraj-Ul-Islam; Khan, M. A.: A numerical method based on nonpolynomial sextic spline functions for the solution of special fifth-order boundary value problems. Appl. math. Comput. 181, 356-361 (2006) · Zbl 1148.65312
[17] Wazwaz, A. M.: The numerical solution of fifth-order boundary-value problems by Adomian decomposition. J. comput. Appl. math. 136, 259-270 (2001) · Zbl 0986.65072