zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays. (English) Zbl 1133.68412
Summary: We discuss average consensus problem in undirected networks of dynamic agents with fixed and switching topologies as well as multiple time-varying communication delays. By employing a linear matrix inequality method, we prove that all the nodes in the network achieve average consensus asymptotically for appropriate communication delays if the network topology is connected. Particularly, several feasible linear matrix inequalities are established to determine the maximal allowable upper bound of time-varying communication delays. Numerical examples are given to demonstrate the effectiveness and the sharpness of the theoretical results.

68T05Learning and adaptive systems
LMI toolbox
Full Text: DOI
[1] R. W. Beard, V. Stepanyan, Synchronization of information in distributed multiple vehicle coordination control, in: Proceedings of the IEEE Conference on Decision and Control, Maui, HI. December 2003, pp. 2029 -- 2034.
[2] Boyd, B.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in system and control theory. (1994) · Zbl 0816.93004
[3] T. Chu, L. Wang, T. Chen, Self-organized motion in a class of anisotropic swarms, in: Proceedings of American Control Conference, Portland, OR, USA, June 2005, pp. 3474 -- 3479.
[4] Fax, J. A.; Murray, R. M.: Information flow and cooperative control of vehicle formations. IEEE trans. Automat. control 49, 1465-1476 (2004)
[5] Gahinet, P.; Nemirovski, A.; Laub, A.; Chilali, M.: LMI control toolbox user’s guide. The math works. (1995)
[6] Hale, J. K.; Lunel, S. M. Verduyn: Introduction to functional differential equations. (1993) · Zbl 0787.34002
[7] Jadbabaie, A.; Lin, J.; Morse, A. S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE trans. Automat. control 48, 988-1001 (2003)
[8] Lawton, J. R.; Beard, R. W.: Synchronized multiple spacecraft rotations. Automatica 38, 1359-1364 (2002) · Zbl 1032.93553
[9] Lin, Z.; Broucke, M.; Francis, B.: Local control strategies for groups of mobile autonomous agents. IEEE trans. Automat. control 49, 622-629 (2004)
[10] Liu, B.; Chu, T.; Wang, L.; Wang, Z.: Swarm dynamics of a group of mobile autonomous agents. Chinese phys. Lett. 22, 254-257 (2005)
[11] Lynch, N. A.: Distributed algorithms, morgan kaufmann. (1997)
[12] L. Moreau, Stability of continuous-time distributed consensus algorithms, in: Proceedings of the IEEE Conference Decision and Control, Atlantis, Paradise Island, Bahamas, 2004, pp. 3998 -- 4003.
[13] Moreau, L.: Stability of multiagent systems with time-dependent communication links. IEEE trans. Automat. control 50, 169-182 (2005)
[14] Mu, S.; Chu, T.; Wang, L.: Coordinated collective motion in a motile particle group with a leader. Phys. A 351, 211-226 (2005)
[15] Olfati-Saber, R.; Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE trans. Automat. control 49, 1520-1533 (2004)
[16] Ren, W.; Beard, R. W.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE trans. Automat. control 50, 655-661 (2005)
[17] W. Ren, R. W. Beard, and E. M. Atkins, A survey of consensus problems in multi-agent coordination, in: Proceedings of the American Control Conference, Portland, 2005, pp. 1859 -- 1864.
[18] Shi, H.; Wang, L.; Chu, T.: Swarming behavior of multi-agent systems. J. control theory appl. 2, 313-318 (2004)
[19] Toner, J.; Tu, Y.: Flocks, herds, and schools: a quantitative theory of flocking. Phys. rev. E 75, 1226-1229 (1995)
[20] L. Wang, H. Shi, T. Chu, W. Zhang, L. Zhang, Aggregation of foraging swarms, Lecture Notes in Computer Science vol. 3339, Springer, 2004, pp. 766 -- 777.
[21] Xiao, L.; Boyd, S.: Fast linear iterations for distributed averaging. Systems control lett. 53, 65-78 (2004) · Zbl 1157.90347