zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A taxonomy of consistently stabilized finite element methods for the Stokes problem. (English) Zbl 1133.76307
Summary: Stabilized mixed methods can circumvent the restrictive inf-sup condition without introducing penalty errors. For properly chosen stabilization parameters these methods are well-posed for all conforming velocity-pressure pairs. However, their variational forms have widely varying properties. First, stabilization offers a choice between weakly or strongly coercive bilinear forms that give rise to linear systems with identical solutions but very different matrix properties. Second, coercivity may be conditional upon a proper choice of a stabilizing parameter. Here we focus on how these two aspects of stabilized methods affect their accuracy and efficient iterative solution. We present results that indicate a preference of Krylov subspace solvers for strongly coercive formulations. Stability criteria obtained by finite element and algebraic analyses are compared with numerical experiments. While for two popular classes of stabilized methods, sufficient stability bounds correlate well with numerical stability, our experiments indicate the intriguing possibility that the pressure-stabilized Galerkin method is unconditionally stable.

76D05Navier-Stokes equations (fluid dynamics)
76D07Stokes and related (Oseen, etc.) flows
65F10Iterative methods for linear systems
65F30Other matrix algorithms
76M10Finite element methods (fluid mechanics)
65N22Solution of discretized equations (BVP of PDE)
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
Full Text: DOI