×

zbMATH — the first resource for mathematics

Periodic solutions for nonlinear elliptic equations. Application to charged particle beam focusing systems. (English) Zbl 1133.78307
Summary: We study the existence of spatial periodic solutions for nonlinear elliptic equations of the form \[ -\Delta u+ g(x, u(x))=0,\quad x\in\mathbb{R}^N, \] where \(g\) is a continuous function, nondecreasing with respect to \(u\). We give necessary and sufficient conditions for the existence of periodic solutions. Some cases with nonincreasing function \(g\) are investigated as well. As an application we analyze a mathematical model for the electron beam focusing system and prove the existence of positive periodic solutions for the envelope equation. We also present numerical simulations.
MSC:
78A35 Motion of charged particles
35J60 Nonlinear elliptic equations
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
35B10 Periodic solutions to PDEs
47J30 Variational methods involving nonlinear operators
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
Software:
Vador
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] M. Bostan , Solutions périodiques des équations d’évolution . C. R. Acad. Sci., Ser. I, Math. 332 ( 2001 ) 401 - 404 . Zbl 1047.34065 · Zbl 1047.34065 · doi:10.1016/S0764-4442(01)01856-0
[2] M. Bostan , Periodic solutions for evolution equations . Electron. J. Diff. Eqns., Monograph 3 ( 2002 ) 41. MR 1937154 | Zbl 1010.34060 · Zbl 1010.34060 · emis:journals/EJDE/Monographs/03/abstr.html · emis:journals/EJDE/mono-toc.html
[3] H. Brezis , Problèmes unilatéraux . J. Math. Pures Appl. 51 ( 1972 ) 1 - 64 . Zbl 0237.35001 · Zbl 0237.35001
[4] R.C. Davidson and H. Qin , Physics of charged particle beams in high energy accelerators . Imperial College Press, World Scientific Singapore ( 2001 ).
[5] P. Degond and P.-A. Raviart , On the paraxial approximation of the stationary Vlasov-Maxwell system , Math. Models Meth. Appl. Sci. 3 ( 1993 ) 513 - 562 . Zbl 0787.35110 · Zbl 0787.35110 · doi:10.1142/S0218202593000278
[6] F. Filbet and E. Sonnendrücker , Modeling and numerical simulation of space charge dominated beams in the paraxial approximation . Research report INRIA, No. 5547 ( 2004 ). Zbl 1109.78013 · Zbl 1109.78013 · doi:10.1142/S0218202506001340
[7] I.M. Kapchinsky and V.V. Vladimirsky , Proceedings of the 9th international conference on high energy accelerators , CERN Geneva ( 1959 ) 274.
[8] D. Kinderlehrer and G. Stampacchia , An introduction to variational inequalities and their applications . Academic Press, New York, London ( 1980 ). MR 567696 | Zbl 0457.35001 · Zbl 0457.35001
[9] G. Laval , S. Mas-Gallic and P.-A. Raviart , Paraxial approximation of ultra-relativistic intense beams . Numer. Math. 1 ( 1994 ) 33 - 60 . Zbl 0816.65119 · Zbl 0816.65119 · doi:10.1007/s002110050079
[10] J.-L. Lions , Quelques méthodes de résolution des problèmes aux limites non-linéaires . Dunod Gauthier-Villars ( 1969 ). MR 259693 | Zbl 0189.40603 · Zbl 0189.40603
[11] Z. Meiyue , C. Taiyoung , L. Wenbin and J. Yong , Existence of positive periodic solution for the electron beam focusing system . Math. Meth. Appl. Sci. 28 ( 2005 ) 779 - 788 . Zbl 1069.34065 · Zbl 1069.34065 · doi:10.1002/mma.591
[12] A. Nouri , Paraxial approximation of the Vlasov-Maxwell system: laminar beams . Math. Models Meth. Appl. Sci. 4 ( 1994 ) 203 - 221 . Zbl 0803.35148 · Zbl 0803.35148 · doi:10.1142/S0218202594000121
[13] P.-A. Raviart , Paraxial approximation of the stationary Vlasov-Maxwell equations , Nonlinear partial differential equations and their applications. Collège de France Seminar, vol. XIII Paris ( 1991 - 1993 ), Pitman Res. Notes Math. Ser., Longman Sci. Tech., Harlow 302 ( 1994 ) 158 - 171 . Zbl 0823.35149 · Zbl 0823.35149
[14] M. Reiser , Theory and design of charged-particle beams . Wiley, New York ( 1994 ).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.