Nozari, Kourosh; Mehdipour, S. Hamid Black holes remnants in extra dimensions and dark matter. (English) Zbl 1133.83361 Int. J. Mod. Phys. A 21, No. 23-24, 4979-4992 (2006). Summary: Bekenstein–Hawking formalism of black hole thermodynamics should be modified to incorporate quantum gravitational effects. Generalized Uncertainty Principle (GUP) provides a suitable framework to perform such modifications. In this paper, we consider a general form of GUP to find black hole thermodynamics in a model universe with large extra dimensions. We will show that black holes radiate mainly in the four-dimensional brane. Existence of black holes remnants as a possible candidate for dark matter is discussed. Cited in 10 Documents MSC: 83C57 Black holes 83E15 Kaluza-Klein and other higher-dimensional theories 80A10 Classical and relativistic thermodynamics 83C45 Quantization of the gravitational field Keywords:quantum gravity; generalized uncertainty principle; black holes thermodynamics; large extra dimensions PDF BibTeX XML Cite \textit{K. Nozari} and \textit{S. H. Mehdipour}, Int. J. Mod. Phys. A 21, No. 23--24, 4979--4992 (2006; Zbl 1133.83361) Full Text: DOI arXiv References: [1] DOI: 10.1016/S0370-2693(98)00466-3 · Zbl 1355.81103 [2] DOI: 10.1016/S0370-2693(98)00860-0 [3] DOI: 10.1103/PhysRevD.59.086004 [4] DOI: 10.1103/PhysRevLett.83.4690 · Zbl 0946.81074 [5] DOI: 10.1103/PhysRevLett.83.3370 · Zbl 0946.81063 [6] DOI: 10.1103/PhysRevLett.88.021303 [7] DOI: 10.1016/S0370-2693(01)01421-6 · Zbl 01686885 [8] Ringwald A., Phys. Lett. B 529 pp 1– [9] Ave M., Phys. Rev. D 68 pp 043004– [10] DOI: 10.1103/PhysRevD.66.033002 [11] DOI: 10.1103/PhysRevD.65.064023 [12] DOI: 10.1142/S0218271803004316 [13] DOI: 10.1142/S0217751X03013569 · Zbl 1035.83023 [14] DOI: 10.1016/j.physletb.2003.06.065 · Zbl 01969754 [15] DOI: 10.1103/PhysRevLett.85.499 · Zbl 1369.83039 [16] DOI: 10.1103/PhysRevD.67.064025 [17] Harris C. M., J. High Energy Phys. 0310 pp 014– [18] DOI: 10.1103/PhysRevD.66.024023 [19] DOI: 10.1103/PhysRevD.67.104019 [20] DOI: 10.1016/0370-2693(89)91366-X [21] DOI: 10.1016/0550-3213(90)90375-N [22] DOI: 10.1016/0550-3213(93)90367-X [23] DOI: 10.1016/0370-2693(90)91927-4 [24] DOI: 10.1103/PhysRevD.49.5182 [25] DOI: 10.1016/0370-2693(93)90785-G [26] DOI: 10.1103/PhysRevD.52.1108 [27] DOI: 10.1016/0370-2693(93)91401-8 [28] DOI: 10.1016/S0370-2693(99)00167-7 [29] DOI: 10.1088/0264-9381/20/18/305 · Zbl 1048.83009 [30] DOI: 10.1023/A:1015281430411 · Zbl 1003.83020 [31] Medved A. J. M., Phys. Rev. D 70 pp 1240– [32] DOI: 10.1088/0264-9381/22/1/009 · Zbl 1060.83522 [33] DOI: 10.1088/0264-9381/20/15/303 · Zbl 1108.83304 [34] DOI: 10.1016/S0370-2693(98)01184-8 [35] Chamblin A., Phys. Rev. D 61 pp 0605007– [36] DOI: 10.1103/PhysRevLett.85.499 · Zbl 1369.83039 [37] DOI: 10.1103/PhysRevD.54.5174 [38] DOI: 10.1142/S0217732399001462 [39] DOI: 10.1103/PhysRevD.52.1108 [40] DOI: 10.1016/j.physletb.2003.09.040 · Zbl 1029.83501 [41] H. Ohanian and R. Ruffini, Gravitation and Spacetime, 2nd edn. (W. W. Norton, 1994) p. 481. [42] Adler R. J., Phys. Rev. D 14 pp 2472– [43] Hanni R. S., Black Holes (1973) [44] Christodoulou D., Phys. Rev. D 4 pp 3352– [45] DOI: 10.1088/0264-9381/20/15/101 · Zbl 1044.83502 [46] Zeldovich Ya. B., Sov. Astron. 10 pp 602– [47] DOI: 10.1093/mnras/152.1.75 [48] DOI: 10.1103/PhysRevD.49.6410 [49] DOI: 10.1016/S0370-1573(98)00128-8 [50] DOI: 10.1016/S0370-1573(00)00038-7 [51] DOI: 10.1016/j.newar.2005.01.015 [52] DOI: 10.1142/S0217751X03013569 · Zbl 1035.83023 [53] DOI: 10.1103/PhysRevD.64.093010 [54] DOI: 10.1103/PhysRevLett.16.748 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.