zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Early viscous universe with variable gravitational and cosmological `constants’. (English) Zbl 1133.83418
Summary: Einstein’s field equations with variable gravitational and cosmological `constants’ are considered in the presence of bulk viscosity for a spatially flat homogeneous and isotropic universe. Solutions are obtained by using a `gamma-law’ equation of state $p = (\gamma - 1)\rho$ , where the adiabatic parameter $\gamma$ varies continuously as the universe expands. A unified description of the early evolution of universe is presented with a number of possible assumptions on the bulk viscous term and gravitational constant in which an inflationary phase is followed by radiation-dominated phase. We investigate the cosmological model with constant and time-dependent bulk viscosity (proportional to power function of energy density and to Hubble parameter) along with constant and variable gravitational constant. The effect of viscosity is shown to affect the past and future of the universe. In all cases, the cosmological constant $\Lambda$ is found to be positive and a decreasing function of time, which supports the results obtained from recent supernovae Ia observations. The possibility that the present acceleration of the universe is driven by a kind of viscous fluid is explained. At the background level this model is similar to the generalized Chaplygin gas model. The physical and geometrical significance of the early cosmological models has also been discussed.

83F05Relativistic cosmology
Full Text: DOI