×

zbMATH — the first resource for mathematics

Stochastic controllability of linear systems with state delays. (English) Zbl 1133.93307
Summary: A class of finite-dimensional stationary dynamic control systems described by linear stochastic ordinary differential state equations with a single point delay in the state variables is considered. Using a theorem and methods adopted directly from deterministic controllability problems, necessary and sufficient conditions for various kinds of stochastic relative controllability are formulated and proved. It will be demonstrated that under suitable assumptions the relative controllability of an associated deterministic linear dynamic system is equivalent to the stochastic relative exact controllability and the stochastic relative approximate controllability of the original linear stochastic dynamic system. Some remarks and comments on the existing results for the controllability of linear dynamic systems with delays are also presented. Finally, a minimum energy control problem for a stochastic dynamic system is formulated and solved.

MSC:
93B05 Controllability
93E03 Stochastic systems in control theory (general)
93C05 Linear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Arapostathis A., George R.K., Ghosh M.K. (2001): On the controllability of a class of nonlinear stochastic systems. - Syst. Contr. Lett., Vol. 44, No. 1, pp. 25-34. · Zbl 0986.93007
[2] Balasubramaniam P. and Dauer J.P. (2001): Controllability of semilinear stochastic evolution equations in Hilbert spaces. - J. Appl. Math. Stoch. Anal., Vol. 14, No. 4, pp. 329-339. · Zbl 1031.93040
[3] Bashirov A.E., and Kerimov K.R. (1997): On controllability conception for stochastic systems. - SIAM J. Contr. Optim, Vol. 35, No. 2, pp. 348-398. · Zbl 0873.93076
[4] Bashirov A.E. and Mahmudov N.I. (1999): On concepts of controllability for deterministic and stochastic systems. - SIAM J. Contr. Optim., Vol. 37, No. 6, pp. 1808-1821. · Zbl 0940.93013
[5] Ehrhard M. and Kliemann W. (1982): Controllability of stochastic linear systems. - Syst. Contr. Lett., Vol. 2, No. 2, pp. 145-153. · Zbl 0493.93009
[6] Fernandez-Cara E., Garrido-Atienza M.J. and Real J. (1999): On the approximate controllability of a stochastic parabolic equation with multiplicative noise. - C.R. Acad. Sci. Paris, t. 328, Sèrie 1, pp. 675-680. · Zbl 0932.93007
[7] Kim Jong Uhn (2004): Approximate controllability of a stochastic wave equation. - Appl. Math. Optim., Vol. 49, No. 1, pp. 81-98. · Zbl 1059.93019
[8] Klamka J. (1991): Controllability of Dynamical Systems. - Dordrecht: Kluwer Academic.
[9] Klamka J. (1993): Controllability of dynamical systems-A survey. - Arch. Contr. Sci., Vol. 2, No. 3/4, pp. 281-307. · Zbl 0818.93002
[10] Klamka J. (1996): Constrained controllability of nonlinear systems. - J. Math. Anal. Applic., Vol. 201, No. 2, pp. 365-374. · Zbl 0858.93014
[11] Klamka J. (2000): Schauder’s fixed point theorem in nonlinear controllability problems. - Contr. Cybern., Vol. 29, No. 3, pp. 377-393. · Zbl 1011.93001
[12] Klamka J. and Socha L. (1977): Some remarks about stochastic controllability. - IEEE Trans. Automat. Contr., Vol. AC-22, No. 5, pp. 880-881. · Zbl 0363.93048
[13] Klamka J. and Socha L. (1980): Some remarks about stochastic controllability for delayed linear systems. - Int. J. Contr., Vol. 32, No. 3, pp. 561-566. · Zbl 0443.93011
[14] Mahmudov N.I. (2001): Controllability of linear stochastic systems. - IEEE Trans. Automat. Contr., Vol. AC-46, No. 4, pp. 724-731. · Zbl 1031.93034
[15] Mahmudov N.I. (2001): Controllability of linear stochastic systems in Hilbert spaces. - J. Math. Anal. Applic., Vol. 259, No. 1, pp. 64-82. · Zbl 1031.93032
[16] Mahmudov N.I. (2002): On controllability of semilinear stochastic systems in Hilbert spaces. - IMA J. Mathemat. Contr. Inf., Vol. 19, No. 2, pp. 363-376. · Zbl 1138.93313
[17] Mahmudov N.I. (2003): Controllability and observability of linear stochastic systems in Hilbert spaces. - Progress in Probability, Vol. 53, No. 1, pp. 151-167. · Zbl 1175.93210
[18] Mahmudov N.I. (2003): Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces. - SIAM J. Contr. Optim. Vol. 42, No. 5, pp. 1604-1622. · Zbl 1084.93006
[19] Mahmudov N.I. and Denker A. (2000): On controllability of linear stochastic systems. - Int. J. Contr., Vol. 73, No. 2, pp. 144-151. · Zbl 1031.93033
[20] Mahmudov N.I. and Zorlu S. (2003): Controllability of nonlinear stochastic systems. - Int. J. Contr., Vol. 76, No. 2, pp. 95-104. · Zbl 1111.93301
[21] Subramaniam R. and Balachandran K. (2002): Controllability of stochastic Volterra integrodifferential systems. - Korean J. Comput. Appl. Math., Vol. 9, No. 2, pp. 583-589. · Zbl 1031.93039
[22] Sunahara Y., Kabeuchi T., Asada S., Aihara S. and Kishino K. (1974): On stochastic controllability for nonlinear systems. - IEEE Trans. Automat. Contr., Vol. AC-19, No. 1, pp. 49-54. · Zbl 0276.93011
[23] Sunahara Y., Aihara S. and Kishino K. (1975): On the stochastic observability and controllability for nonlinear systems. - Int. J. Contr., Vol. 22, No. 1, pp. 65-82. · Zbl 0315.93021
[24] Zabczyk J. (1991): Controllability of stochastic linear systems. - Syst. Contr. Lett., Vol. 1, No. 1, pp. 25-31. · Zbl 0481.93054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.