zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exponential stability and stabilization of uncertain linear time-varying systems using parameter dependent Lyapunov function. (English) Zbl 1133.93358
Summary: The problem of exponential stability and stabilization for a class of uncertain linear time-varying systems is considered. The system matrix belongs to a polytope and the time-varying parameter as well as its time derivative are bounded. Based on a time-varying version of Lyapunov stability theorem, new sufficient conditions for the exponential stability and stabilization via parameter dependent state feedback controllers (i.e., a gain scheduling controllers) are given. Using parameter dependent Lyapunov function, the conditions are formulated in terms of two linear matrix inequalities without introducing extra useless decision variables and hence are simply verified. The results are illustrated by numerical examples.

93D05Lyapunov and other classical stabilities of control systems
93D09Robust stability of control systems
93C41Control problems with incomplete information
93B52Feedback control
Full Text: DOI