zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An analysis on the global asymptotic stability for neural networks with variable delays. (English) Zbl 1134.34330
Summary: Based on the Lyapunov-Razumikhin technique as well as linear matrix inequality analysis, two new sufficient conditions are presented for the global asymptotic stability of neural networks with variable delays. The results given here are less conservative than those provided in the earlier references.

34K20Stability theory of functional-differential equations
93D20Asymptotic stability of control systems
Full Text: DOI
[1] Chu, T.: Phys. lett. A. 283, 113 (2001)
[2] Zhang, Q.; Wei, X. P.; Xu, J.: Phys. lett. A. 318, 537 (2003)
[3] Zhang, J.: IEEE trans. Circuits systems I. 50, 288 (2003)
[4] Zhou, D.; Cao, J.: Appl. math. Comput.. 131, 487 (2002)
[5] Peng, J.; Qiao, H.; Xu, Z. B.: Neural networks. 15, 95 (2002)
[6] Zhang, Y.: Int. J. Systems sci.. 27, 895 (1996)
[7] Xu, D.; Zhao, H.; Zhu, H.: Comput. math. Appl.. 42, 39 (2001)
[8] Hou, C.; Qian, J.: IEEE trans. Neural networks. 9, 221 (1998)
[9] Liao, X.; Chen, G.; Sanchez, E. N.: Neural networks. 15, 855 (2002)
[10] Liao, X.; Chen, G.; Sanchez, E. N.: IEEE trans. Circuits systems I. 49, 1033 (2002)
[11] Joy, M.: J. math. Anal. appl.. 232, 61 (1999)
[12] Cao, J.; Wang, J.: IEEE trans. Circuits systems I. 50, 34 (2003)
[13] Li, X. M.; Huang, L. H.; Zhu, H.: Nonlinear anal.. 53, 319 (2003)
[14] Arik, S.: Phys. lett. A. 311, 504 (2003)
[15] Chua, L. O.; Ling, Y.: IEEE trans. Circuits systems I. 35, 1257 (1988)
[16] Haddock, J.; Terjéki, J.: J. differential equations. 48, 95 (1983) · Zbl 0531.34058
[17] Bélair, J.; Campbell, S. A.; Den Driessche, P. Van: SIAM J. Appl. math.. 56, 245 (1996)
[18] Den Driessche, P. Van; Zhou, X.: SIAM J. Appl. math.. 58, 1878 (1998)
[19] Wang, L.; Zou, X.: Physica D. 170, 162 (2002)
[20] Cao, J.: Int. J. Systems sci.. 31, 1313 (2000)
[21] Horn, R. A.; Johnson, C. R.: Matrix analysis. (1991) · Zbl 0729.15001
[22] Berman, A.; Plemmons, R. J.: Non-negative matrices in the mathematical sciences. (1979) · Zbl 0484.15016