×

The existence of positive solution to some asymptotically linear elliptic equations in exterior domains. (English) Zbl 1134.35038

Summary: We are concerned with the asymptotically linear elliptic problem \(-\Delta u+ \lambda_{0}u=f(u)\), \(u\in H_{0}^{1}(\Omega ) \) in an exterior domain \(\Omega= \mathbb{R}^{N}\setminus \overline{\mathcal O}\) \(( N\geqslant 3)\) with \({\mathcal O}\) a smooth bounded and star-shaped open set, and \(\lim_{t\rightarrow +\infty }\frac{ f(t)}{t}=l\), \(0<l<+\infty\). Using a precise deformation lemma and algebraic topology argument, we prove under our assumptions that the problem possesses at least one positive solution.

MSC:

35J60 Nonlinear elliptic equations
35J20 Variational methods for second-order elliptic equations
35J25 Boundary value problems for second-order elliptic equations
47J30 Variational methods involving nonlinear operators
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces

References:

[1] Ambrosetti, A. and Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Functional Analysis 14 (1973), 349-381. · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[2] Bahri, A. and Lions, P.L.: On the existence of a positive solution of semilinear elliptic equations in unbounded domains. Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997), 365-413. · Zbl 0883.35045 · doi:10.1016/S0294-1449(97)80142-4
[3] Bartolo, P., Benci, V. and Fortunato, D.: Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity. Nonlinear Anal. 7 (1983), 981-1012. · Zbl 0522.58012 · doi:10.1016/0362-546X(83)90115-3
[4] Benci, V. and Cerami, G.: Positive solutions of some nonlinear elliptic problems in exterior domains. Arch. Rational Mech. Anal. 99 (1987), no. 4, 283-300. · Zbl 0635.35036 · doi:10.1007/BF00282048
[5] Berestycki, H. and Lions, P.L.: Nonlinear scalar field equations, I. Existence of a ground state. Arch. Rational. Mech. Anal. 82 (1983), no. 4, 313-345. · Zbl 0533.35029
[6] Brezis, H. and Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36 (1983), 437-477. · Zbl 0541.35029 · doi:10.1002/cpa.3160360405
[7] Chang, K.C.: Solutions of asymptotically linear operator equations via Morse theory. Comm. Pure Appl. Math. 34 (1981), 693-712. · Zbl 0444.58008 · doi:10.1002/cpa.3160340503
[8] Chang, K.C.: Critical point theory and its applications . Shanagi Scientific Technical Press, 1986 (Chinese). · Zbl 0698.58002
[9] Citti, G.: On the exterior Dirichlet problem for \(\Delta u -u +f(x,u)=0\). Rend. Sem. Mat. Univ. Padova 88 (1992), 83-110. · Zbl 0803.35050
[10] Costa, D.G. and Tehrani, H.: On a class of asymptotically linear elliptic problems in \(\mathbbR^N\). J. Differential Equations 173 (2001), 470-494. · Zbl 1098.35526 · doi:10.1006/jdeq.2000.3944
[11] Ding, W.Y. and Ni, W.M.: On the existence of positive entire solutions of a semilinear elliptic equation. Arch. Rational Mech. Anal. 91 (1986), 283-308. · Zbl 0616.35029 · doi:10.1007/BF00282336
[12] Gidas, B., Ni, W.N. and Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in \(\mathbbR^n\). In Mathematical analysis and applications, Part A, 369-402. Adv. in Math. Suppl. Stud., 7a. Academic Press, New York-London, 1981. · Zbl 0469.35052
[13] Hess, P.: Nolinear perturbations of linear elliptic and parabolic problems at resonance: existence of multiple solutions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1978), 527-537. · Zbl 0392.35051
[14] Jeanjean, L.: On the existence of bounded Palais-Smale sequences and application to a Landesmann-Lazer-type problem set on \(\mathbbR^ N\). Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), 787-809. · Zbl 0935.35044 · doi:10.1017/S0308210500013147
[15] Kwong, M.K. and Zhang, L.: Uniqueness of the positive solution of \(\Delta u+f(u)=0\) in annulus. Differential Integral Equations 4 (1991), no. 3, 583-599. · Zbl 0724.34023
[16] Li, G. and Zhou, H.-S.: Dirichlet Problem of \(p\)-Laplacian with Nonlinear Term \(f(x, u) \thicksim u^p-1\) at Infinity. In Morse Theory, Minimax Theory and Their Applicatons to Nonlinear Differential Equations , 77-89. Edited by H. Brezis et al . International Press, 2003. · Zbl 1190.35105
[17] Li, G. and Zhou, H.-S.: The existence of a positive solution to asymptically linear scalar field equations. Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), 81-105. · Zbl 0942.35075 · doi:10.1017/S0308210500000068
[18] Li, G. and Zhou, H.-S.: Asymptotically linear Dirichlet problem for the \(p\)-Laplacian. Nolinear Anal. 43 (2001), 1043-1055. · Zbl 0983.35046 · doi:10.1016/S0362-546X(99)00243-6
[19] Li, G. and Zhou, H.-S.: Multiple solutions to p-Laplacian problems with asymptotic nonlinearity as \(u^p-1\) at infinity. J. London Math. Soc. (2) 65 (2002) 123-138. · Zbl 1171.35384 · doi:10.1112/S0024610701002708
[20] Li, Y.Y.: Nonautonomous nonlinear scalar field equations. Indiana Univ. Math. J. 39 (1990), 283-301. · Zbl 0718.35036 · doi:10.1512/iumj.1990.39.39016
[21] Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 223-283. · Zbl 0704.49004
[22] Shen, Y.T. and Yan, S.S.: Variational methods in quasilinear elliptic equations . Press of South China Tech. Univ., 1999 (Chinese).
[23] Strauss, W.A.: Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55 (1977), 149-162. · Zbl 0356.35028 · doi:10.1007/BF01626517
[24] Stuart, C.A. and Zhou, H.S.: Applying the mountain pass theorem to an asymptotically linear elliptic equation on \(\mathbbR^N\). Comm. Partial Differential Equations 24 (1999), 1731-1758. · Zbl 0935.35043 · doi:10.1080/03605309908821481
[25] Yang, J.F.: Positive solutions of semilinear elliptic problems in exterior domains. J. Differential Equations 106 (1993), 40-69. · Zbl 0809.35069 · doi:10.1006/jdeq.1993.1098
[26] Yang, J.F. and Zhu, X.P.: The existence of quasilinear scalar field equation, I. The positive mass cases. Acta Math. Sci. 7 (1987), 341-360.
[27] Zhou, H.S.: Positive solution for a semilinear elliptic equation which is almost linear at infinity. Z. Angew. Math. Phys. 49 (1988), no. 6, 896-906. · Zbl 0916.35036 · doi:10.1007/s000330050128
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.