×

zbMATH — the first resource for mathematics

Geometric optics and instability for semi-classical Schrödinger equations. (English) Zbl 1134.35098
Summary: We prove some instability phenomena for semi-classical (linear or) nonlinear Schrödinger equations. For some perturbations of the data, we show that for very small times, we can neglect the Laplacian, and the mechanism is the same as for the corresponding ordinary differential equation. Our approach allows smaller perturbations of the data, where the instability occurs for times such that the problem cannot be reduced to the study of an ordinary differential equation.

MSC:
35Q55 NLS equations (nonlinear Schrödinger equations)
78A05 Geometric optics
Software:
HERWIG 5.1
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Boyd R.W. (1992). Nonlinear Optics. Academic Press, New York
[2] Burq N., Gérard P., Tzvetkov N. (2002). An instability property of the nonlinear Schrödinger equation on S d . Math. Res. Lett. 9:323–335 · Zbl 1003.35113
[3] Burq N., Gérard P., Tzvetkov N. (2005). Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations. Ann. Sci. École Norm. Sup. (4) 38:255–301 · Zbl 1116.35109
[4] Burq N., Zworski M. (2005). Instability for the semiclassical non-linear Schrödinger equation. Comm. Math. Phys. 260:45–58 · Zbl 1133.35089 · doi:10.1007/s00220-005-1402-x
[5] Carles R. (2000). Geometric optics with caustic crossing for some nonlinear Schrödinger equations. Indiana Univ. Math. J. 49:475–551 · Zbl 0970.35143 · doi:10.1512/iumj.2000.49.1804
[6] Carles R. (2003). Semi-classical Schrödinger equations with harmonic potential and nonlinear perturbation. Ann. Inst. H. Poincaré Anal. Non Linéaire 20:501–542 · Zbl 1031.35119 · doi:10.1016/S0294-1449(02)00027-6
[7] Carles, R.: Cascade of phase shifts for nonlinear Schrödinger equations. Preprint, available as arXiv:math.AP/0502242 (2005).
[8] Carles R.: WKB analysis for nonlinear Schrödinger equations with potential. Comm. Math. Phys., to appear (2006)
[9] Carles R., Fermanian Kammerer C., Gallagher I. (2003). On the role of quadratic oscillations in nonlinear Schrödinger equations. J. Funct. Anal. 203:453–493 · Zbl 1059.35134 · doi:10.1016/S0022-1236(03)00212-X
[10] Carles, R., Keraani, S.: On the role of quadratic oscillations in nonlinear Schrödinger equations II. The L 2-critical case. Trans. Amer. Math. Soc., to appear (2006) · Zbl 1115.35119
[11] Chemin J.-Y. (1990). Dynamique des gaz à masse totale finie. Asymptotic Anal. 3:215–220 · Zbl 0708.76110
[12] Cheverry, C.: Cascade of phases in turbulent flows. Bull. Soc. Math. France, to appear (2005) · Zbl 1116.35002
[13] Cheverry, C., Guès, O.: Counter-examples to the concentration-cancellation property. Preprint, (2005) · Zbl 1160.35003
[14] Cheverry C., Guès O., Métivier G. (2004). Large amplitude high frequency waves for quasilinear hyperbolic systems. Adv. Differential Equations 9:829–890 · Zbl 1107.35079
[15] Christ M., Colliander J., Tao T. (2003). Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations. Amer. J. Math. 125:1235–1293 · Zbl 1048.35101 · doi:10.1353/ajm.2003.0040
[16] Christ, M., Colliander, J., Tao, T.: Ill-posedness for nonlinear Schrödinger and wave equations. Ann. Inst. H. Poincaré Anal. Non Linéaire (2006), see also arXiv:math.AP/0311048
[17] Donnat P. (1994). Quelques Contributions Mathématiques en Optique Non Linéaire. Ph.D. thesis, École Polytechnique, Palaiseau (France)
[18] Gérard, P.: Remarques sur l’analyse semi-classique de l’équation de Schrödinger non linéaire. Séminaire sur les Équations aux Dérivées Partielles, 1992–1993, École Polytech., Palaiseau, pp. Exp. No. XIII, 13, 1993
[19] Ginibre, J., Velo, G.: Sur une équation de Schrödinger non linéaire avec interaction non locale. Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar (Brézis, H., Lions, J.-L. Eds.), Vol. 2, Research Notes in Mathematics, no. 60, Pitman, pp. 155–199, 1982
[20] Grassin M. (1998). Global smooth solutions to Euler equations for a perfect gas. Indiana Univ. Math. J. 47:1397–1432 · Zbl 0930.35134 · doi:10.1512/iumj.1998.47.1608
[21] Grenier E. (1998). Semiclassical limit of the nonlinear Schrödinger equation in small time. Proc. Amer. Math. Soc. 126:523–530 · Zbl 0910.35115 · doi:10.1090/S0002-9939-98-04164-1
[22] Hunter J., Keller J. (1987). Caustics of nonlinear waves. Wave Motion 9:429–443 · Zbl 0645.35062 · doi:10.1016/0165-2125(87)90031-X
[23] Joly J.-L., Métivier G., Rauch J. (1995). Focusing at a point and absorption of nonlinear oscillations. Trans. Amer. Math. Soc. 347:3921–3969 · Zbl 0857.35087 · doi:10.2307/2155210
[24] Joly J.-L., Métivier G., Rauch J. (2000). Caustics for dissipative semilinear oscillations. Mem. Amer. Math. Soc. 144:viii+72 · Zbl 0963.35114
[25] Joly J.-L., Métivier G., Rauch J. (2000). Nonlinear hyperbolic smoothing at a focal point. Michigan Math. J. 47:295–312 · Zbl 0989.35093 · doi:10.1307/mmj/1030132535
[26] Kuksin S.B. (1995). On squeezing and flow of energy for nonlinear wave equations. Geom. Funct. Anal. 5:668–701 · Zbl 0834.35086 · doi:10.1007/BF01902057
[27] Lebeau, G.: Optique non linéaire et ondes sur critiques. Séminaire: Équations aux Dérivées Partielles, 1999–2000, École Polytech., Palaiseau, pp. Exp. No. IV, 13, 2000
[28] Lebeau G. Non linear optic and supercritical wave equation. Hommage à Pascal Laubin. Bull. Soc. Roy. Sci. Liège 70 (2001), 267–306 (2002). · Zbl 1034.35137
[29] Lebeau G. (2005). Perte de régularité pour les équations d’ondes sur-critiques. Bull. Soc. Math. France 133:145–157 · Zbl 1071.35020
[30] Majda A. (1984). Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Applied Mathematical Sciences, Vol. 53, Springer-Verlag, New York · Zbl 0537.76001
[31] Makino T., Ukai S., Kawashima S. (1986). Sur la solution à support compact de l’équation d’Euler compressible. Japan J. Indust. Appl. Math. 3:249–257 · Zbl 0637.76065
[32] Métivier G. (2004). Exemples d’instabilités pour des équations d’ondes non linéaires (d’après G. Lebeau). Astérisque 294:63–75
[33] Niederer U. (1974). The maximal kinematical invariance groups of Schrödinger equations with arbitrary potentials. Helv. Phys. Acta 47:167–172
[34] Rauch, J., Keel, M.: Lectures on geometric optics. Hyperbolic Equations and Frequency Interactions (Park City, UT, 1995), American Mathematical Society, Providence, RI, pp. 383–466, 1999 · Zbl 0926.35003
[35] Sideris T. (1985). Formation of singularities in three-dimensional compressible fluids. Comm. Math. Phys. 101:475–485 · Zbl 0606.76088 · doi:10.1007/BF01210741
[36] Zakharov V.E., Shabat A.B. (1971). Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. vZ. Èksper. Teoret. Fiz. 61:118–134
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.