zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The integrable coupling of the AKNS hierarchy and its Hamiltonian structure. (English) Zbl 1134.37030
Summary: The Hamiltonian structure of the integrable coupling of the AKNS hierarchy is obtained by the quadratic-form identity. The method can be used to produce the Hamiltonian structures of the other integrable couplings.

37K10Completely integrable systems, integrability tests, bi-Hamiltonian structures, hierarchies
37K05Hamiltonian structures, symmetries, variational principles, conservation laws
Full Text: DOI
[1] Tu, Guizhang: J math phys. 30, No. 2, 330 (1989)
[2] Guo, Fukui; Zhang, Yufeng: Acta phys sinica. 51, No. 5, 951 (2002)
[3] Guo, Fukui; Zhang, Yufeng: Chaos, solitons & fractals. 22, No. 5, 1063 (2004)
[4] Guo, Fukui; Zhang, Yufeng: J math phys. 44, No. 12, 5793 (2003)
[5] Guo, Fukui; Zhang, Yufeng: J phys A. 38, 8537 (2005) · Zbl 1055.37068
[6] Ablowitz, M. J.; Segur, H.: Solitons and the inverse scattering transform. (1981) · Zbl 0472.35002
[7] Newell, A. C.: Solitons in mathematics and physics. (1985) · Zbl 0565.35003
[8] Guo, Fukui; Zhang, Yufeng: Chaos, solitons & fractals. 19, 1207 (2004)
[9] Zhang, Y.: Phys lett A. 321, 438 (2004)
[10] Zeng, Yunbo; Li, Yishen: J math phys. 30, No. 8, 1679 (1989)
[11] Li, Yishen; Zhang, Jin: Chaos, solitons & fractals. 16, 271 (2003)
[12] Cao, Cewen: Sci China (Ser A). 33, No. 5, 528 (1990)