zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hybrid approximations via second-order crossed dynamic derivatives with the $\diamondsuit _\alpha $ derivative. (English) Zbl 1134.39302
Summary: Second-order crossed dynamic derivatives with the $\diamondsuit _\alpha$ dynamic derivative on time scales will be used for approximating the conventional second derivative in the study. We will discuss the conditions under which the crossed dynamic derivatives provide consistent approximations of the conventional derivative; the chances in which the dynamic derivatives approximate the derivative only via proper modifications of their formulae; and the situations in which the dynamic derivatives can never fulfill any consistent approximations even with structure modifications. Valuable error estimates will be developed via asymptotic expansions for potential computational and modeling applications.

39A13Difference equations, scaling ($q$-differences)
74H15Numerical approximation of solutions for dynamical problems in solid mechanics
74S20Finite difference methods in solid mechanics
39A10Additive difference equations
39A12Discrete version of topics in analysis
Full Text: DOI
[1] Anderson, D. R.; Bullock, J.; Erbe, L.; Peterson, A.; Tran, H.: Nabla dynamic equations, Advances in dynamic equations on time scales (2003) · Zbl 1032.39007
[2] Bohner, M.; Peterson, A.: Dynamic equations on time scales: an introduction with applications, (2001) · Zbl 0978.39001
[3] Bohner, M.; Peterson, A.: First and second order linear dynamic equations on time scales, J. diff. Eqn. appl. 7, 767-792 (2001) · Zbl 0993.39010 · doi:10.1080/10236190108808302
[4] Bohner, M.; Peterson, A.: Advances in dynamic equations on time scales, (2003) · Zbl 1025.34001
[5] Davis, J. M.; Henderson, J.; Rajendra, P.; Yin, W.: Solvability of a nonlinear second order conjugate eigenvalue problem on a time scale, Abstr. appl. Anal. 5, 91-99 (2000) · Zbl 1005.34010 · doi:10.1155/S108533750000018X
[6] Eloe, P. W.; Hilger, S.; Sheng, Q.: A qualitative analysis on nonconstant graininess of the adaptive grid via time scales, Rocky mount. J. math. 36, 115-133 (2006) · Zbl 1135.65030 · doi:10.1216/rmjm/1181069491 · euclid:rmjm/1181069491
[7] Eloe, P. W.; Sheng, Q.; Henderson, J.: Notes on crossed symmetry solution of the two-point boundary value problems on time scales, J. diff. Eqns. appl. 9, 29-48 (2003) · Zbl 1038.34013 · doi:10.1080/10236190290015326
[8] Erbe, L.; Peterson, A.: Boundedness and oscillation for nonlinear dynamic equations on a time scale, Proc. am. Math. soc. 132, 735-744 (2004) · Zbl 1055.39007 · doi:10.1090/S0002-9939-03-07061-8
[9] I. Gravagne, J.M. Davis, R.J. Marks, How deterministic must a real-time controller be? Proceedings of IEEE/RSJ International Conference Intelligent Robots and Systems, Alberta, 2005, pp. 3856 -- 3861.
[10] Hilger, S.: Analysis on measure chain --- a unified approach to continuous and discrete calculus, Results math. 18, 18-56 (1990) · Zbl 0722.39001
[11] Lakshmikantham, V.; Sivasundaram, S.; Kaymakcalan, B.: Dynamic systems on measure chains, (1996) · Zbl 0869.34039
[12] J.W. Rogers Jr., Q. Sheng, Notes on the diamond-\alpha  dynamic derivative on time scales, J. Math. Anal. Appl. 326 (2007) 228 -- 241. · Zbl 1114.26003
[13] Sheng, Q.: A view of dynamic derivatives on time scales from approximations, J. diff. Eqn. appl. 11, 63-82 (2005) · Zbl 1088.39016 · doi:10.1080/10236190412331312431
[14] Q. Sheng, A second view of dynamic derivatives on time scales from hybrid approximations, preprint, 2006.
[15] Q. Sheng, Hybrid approximations via second order combined dynamic derivatives on time scales, J. Functional Anal. Approx. Theory, in press. · Zbl 1181.26046 · emis:journals/EJQTDE/2007/200717.html
[16] Sheng, Q.; Fadag, M.; Henderson, J.; Davis, J.: An exploration of combined dynamic derivatives on time scales and their applications, Nonlinear anal.: real world appl. 7, 395-413 (2006) · Zbl 1114.26004 · doi:10.1016/j.nonrwa.2005.03.008
[17] Spedding, V.: Taming nature’s numbers, New sci. 179/2404, 28-31 (2003)
[18] Süli, E.; Mayers, D.: An introduction to numerical analysis, (2003) · Zbl 1033.65001
[19] Thomas, D. M.; Urena, B.: A model describing the evolution of west nile-like encephalitis in New York city, Math. comput. Modelling 34, 771-781 (2001) · Zbl 0999.92025 · doi:10.1016/S0895-7177(01)00098-X