zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Approximating common fixed points of asymptotically nonexpansive maps in uniformly convex Banach spaces. (English) Zbl 1134.47049
Three-step iterative schemes with errors for two and three nonexpansive maps are introduced in the paper. Finding common fixed points of maps acting on a Banach space is a problem that often arises in applied mathematics. In fact, many algorithms have been introduced for different classes of maps with nonempty set of common fixed points [see, e.g., {\it N. Shahzad}, Nonlinear Anal. 61, No. 6 (A), 1031--1039 (2005; Zbl 1089.47058)]. Let $C$ be a nonempty convex subset of a real Banach space $E$ and let $T_i: C \to C$ be nonexpansive maps $(i=1,2,3)$. The following three-step iterative scheme with errors is considered: $ x_1 \in C$, $z_n=\alpha^{(3)}_n x_n + \beta^{(3)}_n T_3 x_n + \gamma^{(3)}_n u^{(3)}_n$, $y_n=\alpha^{(2)}_n x_n + \beta^{(2)}_n T_2 z_n + \gamma^{(2)}_n u^{(2)}_n$, $x_{n+1}=\alpha^{(1)}_n x_n + \beta^{(1)}_n T_1 y_n + \gamma^{(1)}_n u^{(1)}_n$, for all $n \geq 1$, where $\{ u^{(j)}_n \}$ is a bounded sequence in $C$ and $\{ \alpha^{(j)}_n \}$, $\{ \beta^{(j)}_n \}$, $\{ \gamma^{(j)}_n \}$ are sequences in $[0,1]$ satisfying $\alpha^{(j)}_n + \beta^{(j)}_n + \gamma^{(j)}_n =1$, $n \geq 1$, $j=1,2,3$. Under suitable conditions, the weak and strong convergence of the above scheme to a common fixed point of nonexpansive maps in a uniformly convex Banach space is proved. By modifying the iteration schemes, the corresponding results can be proved for asymptotically nonexpansive mappings with suitable changes. The convergence theorems improve and generalize some important results in the current literature.

47J25Iterative procedures (nonlinear operator equations)
47H10Fixed-point theorems for nonlinear operators on topological linear spaces
47H09Mappings defined by “shrinking” properties
Full Text: DOI
[1] Das, G.; Debata, J. P.: Fixed points of quasi-nonexpansive mappings. Indian J. Pure appl. Math. 17, 1263-1269 (1986) · Zbl 0605.47054
[2] Ishikawa, S.: Fixed points by a new iteration method. Proc. amer. Math. soc. 44, 147-150 (1974) · Zbl 0286.47036
[3] Mann, W. R.: Mean value methods in iteration. Proc. amer. Math. soc. 44, 506-510 (1953) · Zbl 0050.11603
[4] Takahashi, W.; Kim, G. E.: Approximating fixed points of nonexpansive mappings in Banach spaces. Math. japon. 48, 1-9 (1998) · Zbl 0913.47056
[5] Tan, K. K.; Xu, H. K.: Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process. J. math. Anal. appl. 178, 301-308 (1993) · Zbl 0895.47048
[6] Zhou, H. Y.: Nonexpansive mappings and iterative methods in uniformly convex Banach spaces. Acta math. Sinica 20, 829-836 (2004) · Zbl 1083.47060
[7] Takahashi, W.; Tamura, T.: Convergence theorems for a pair of nonexpansive mappings. J. convex anal. 5, 45-58 (1995) · Zbl 0916.47042
[8] Shahzad, N.: Approximating fixed points of non-self nonexpansive mappings in Banach spaces. Nonlinear anal. 61, 1031-1039 (2005) · Zbl 1089.47058
[9] Goebel, K.; Kirk, W. A.: A fixed point theorem for asymptotically nonexpansive mappings. Proc. amer. Math. soc. 35, 171-174 (1972) · Zbl 0256.47045
[10] Bose, S. C.: Weak convergence to the fixed point of an asymptotically nonexpansive map. Proc. amer. Math. soc. 68, 305-308 (1978) · Zbl 0377.47037
[11] Schu, J.: Weak and strong convergence to fixed points of asymptotically nonexpansive mappings. Bull. austral. Math. soc. 43, 153-159 (1991) · Zbl 0709.47051
[12] Tan, K. K.; Xu, H. K.: Fixed point iteration processes for asymptotically nonexpansive mapping. Proc. amer. Math. soc. 122, 733-739 (1994) · Zbl 0820.47071
[13] Xu, B.; Noor, M. A.: Fixed-points iteration for asymptotically nonexpansive mappings in Banach spaces. J. math. Anal. appl. 267, 444-453 (2002) · Zbl 1011.47039
[14] Cho, Y. J.; Zhou, H. Y.; Guo, G.: Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings. Comput. math. Appl. 47, 707-717 (2004) · Zbl 1081.47063
[15] Liu, Z. Q.; Kang, S. M.: Weak and strong convergence for fixed points of asymptotically nonexpansive mappings. Acta math. Sinica 20, 1009-1018 (2004) · Zbl 1098.47059
[16] Fukhar-Ud-Din, H.; Khan, S. H.: Convergence of two-step iterative scheme with errors for two asymptotically nonexpansive mappings. Internat. J. Math. math. Sci. 37, 1965-1971 (2004) · Zbl 1086.47048
[17] Khan, S. H.; Fukhar-Ud-Din, H.: Weak and strong convergence of a scheme with errors for two nonexpansive mappings. Nonlinear anal. 8, 1295-1301 (2005) · Zbl 1086.47050
[18] Khan, S. H.; Takahashi, W.: Approximating common fixed points of two asymptotically nonexpansive mappings. Sci. math. Japon. 53, 143-148 (2001) · Zbl 0985.47042
[19] Takahashi, W.; Shimoji, K.: Convergence theorems for nonexpansive mappings and feasibility problems. Math. comput. Modelling 32, 1463-1471 (2000) · Zbl 0971.47040
[20] Xu, H. K.; Ori, R. G.: An implicit iteration process for nonexpansive mappings. Numer. funct. Anal. optim. 22, 767-773 (2001) · Zbl 0999.47043
[21] Kaczor, W.: Weak convergence of almost orbits of asymptotically nonexpansive commutative semigroups. J. math. Anal. appl. 272, 565-574 (2002) · Zbl 1058.47049
[22] Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. amer. Math. soc. 73, 591-597 (1967) · Zbl 0179.19902
[23] Bruck, R. E.: A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces. Israel J. Math. 32, 107-116 (1979) · Zbl 0423.47024
[24] Senter, H. F.; Dotson, W. G.: Approximating fixed points of nonexpansive mappings. Proc. amer. Math. soc. 44, 375-380 (1974) · Zbl 0299.47032