×

Vector variational-like inequalities and non-smooth vector optimization problems. (English) Zbl 1134.49003

The authors investigate the relationship between non-smooth vector optimization problems and vector variational-like inequalities. It is shown that under non-smooth invexity assumption, the set of weakly efficient points of non-smooth vector optimization problems coincides with the solution set of vector variational-like inequalities.

MSC:

49J40 Variational inequalities
90C29 Multi-objective and goal programming
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chen, G. Y.; Craven, B. D., Existence and continuity of solutions for vector optimization, J. Optim. Theory Appl., 81, 459-468 (1994) · Zbl 0810.90112
[2] Clarke, F. H., Optimization and Nonsmooth Analysis (1983), Wiley Interscience: Wiley Interscience New York · Zbl 0727.90045
[3] Dafermos, S., Exchange price equilibrium and variational inequalities, Math. Programming, 46, 391-402 (1990) · Zbl 0709.90013
[4] Fang, Y. P.; Huang, N. J., Variational-like inequalities with generalized monotone mappings in Banach spaces, J. Optim. Theory Appl., 118, 327-338 (2003) · Zbl 1041.49006
[5] Giannessi, F., Theorem of Alternative, (Cottle, R. W.; Giannessi, F.; Lion, J. L., Variational Inequalities and Complementarity Problems (1980), Wiley: Wiley New York) · Zbl 0504.49012
[6] Giannessi, F.; Maugeri, A.; Pardalos, P. M., Equilibrium Problems: Nonsmooth Optimization and Variational inequality Models (2001), Kluwer Academic: Kluwer Academic Dordrecht, Holland · Zbl 0979.00025
[7] Giorgi, G.; Guerraggio, A., Various types of non-smooth invex functions, J. Inform. Optim. Sci, 17, 137-150 (1996) · Zbl 0859.49020
[8] Guerraggio, A.; Molho, E., The origin of quasi-concavity: a development between mathematics and economics, Hist. Math., 31, 62-75 (2004) · Zbl 1102.01021
[9] Hanson, M. A., On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80, 545-550 (1981) · Zbl 0463.90080
[10] Khan, M. F.; Salahuddin, On generalized vector variational-like inequalities, Nonlinear Anal., 59, 879-889 (2004) · Zbl 1083.49008
[11] Kinderlehrer, D.; Stampacchia, G., An Introduction to Variational Inequalities and Their Applications (1980), Academic Press: Academic Press London · Zbl 0457.35001
[12] Mancino, O. G.; Stampacchia, G., Convex programming and variational inequalities, J. Optim. Theory Appl., 9, 3-23 (1972) · Zbl 0223.90031
[13] S.K. Mishra, M.A. Noor, On vector variational-like inequality problems, Journal of Mathematical Analysis and Applications, in press, corrected proof available online 31 May 2005.; S.K. Mishra, M.A. Noor, On vector variational-like inequality problems, Journal of Mathematical Analysis and Applications, in press, corrected proof available online 31 May 2005. · Zbl 1078.49007
[14] S.K. Mishra, S.Y. Wang, K.K. Lai, Multiple objective fractional programming involving semilocally type I-preinvex and related functions. Journal of Mathematical Analysis and Applications, in press, corrected proof available online 30 March 2005.; S.K. Mishra, S.Y. Wang, K.K. Lai, Multiple objective fractional programming involving semilocally type I-preinvex and related functions. Journal of Mathematical Analysis and Applications, in press, corrected proof available online 30 March 2005. · Zbl 1113.90156
[15] Mishra, S. K.; Wang, S. Y.; Lai, K. K., Optimality and duality for multiple-objective optimization under generalized type I univexity, J. Math. Anal. Appl., 303, 315-326 (2005) · Zbl 1090.90173
[16] Noor, M. A., Preinvex functions and variational inequalities, J. Nat. Geometry, 9, 63-76 (1996) · Zbl 0833.49010
[17] Noor, M. A., Variational-like inequalities, Optimization, 30, 323-330 (1994) · Zbl 0816.49005
[18] Parida, J.; Sahoo, M.; Kumar, A., A variational-like inequality problem, Bull. Aust. Math. Soc., 39, 225-231 (1989) · Zbl 0649.49007
[19] Patricksson, M., Nonlinear Programming and Variational Inequality Problems: A Unified Approach (1998), Kluwer Academic: Kluwer Academic Dordrecht
[20] Osuna, R.; Rufian, A.; Ruiz, G., Invex functions and generalized convexity in multiobjective programming, J. Optim. Theory Appl., 98, 651-661 (1998) · Zbl 0921.90133
[21] Ruiz-Garzon, G.; Osuna-Gomez, R.; Rufian-Lizana, A., Relationships between vector variational-like inequality and optimization problems, Eur. J. Oper. Res., 157, 113-119 (2004) · Zbl 1106.90060
[22] Weir, T.; Mond, B., Preinvex functions in multiobjective optimization, J. Math. Anal. Appl., 136, 29-38 (1988) · Zbl 0663.90087
[23] Yang, X. Q., Vector variational inequality and vector pseudolinear optimization, J. Optim. Theory Appl., 95, 729-734 (1997) · Zbl 0901.90162
[24] Yang, X. Q.; Chen, G. Y., A class of nonconvex functions and prevariational inequalities, J. Math. Anal. Appl., 169, 359-373 (1992) · Zbl 0779.90067
[25] Yang, X. Q.; Goh, C. J., On vector variational inequalities: application to vector equilibria, J. Optim. Theory Appl., 95, 431-443 (1997) · Zbl 0892.90158
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.