zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Impulsive state feedback control of a predator-prey model. (English) Zbl 1134.49024
Summary: The dynamics of a predator--prey model with impulsive state feedback control, which is described by an autonomous system with impulses, is studied. The sufficient conditions of existence and stability of semi-trivial solution and positive period-1 solution are obtained by using the Poincaré map and analogue of the Poincaré criterion. The qualitative analysis shows that the positive period-1 solution bifurcates from the semi-trivial solution through a fold bifurcation. The bifurcation diagrams of periodic solutions are obtained by using the Poincaré map, and it is shown that a chaotic solution is generated via a cascade of period-doubling bifurcations.

MSC:
49N75Pursuit and evasion games in calculus of variations
WorldCat.org
Full Text: DOI
References:
[1] D.D. Bainov, P.S. Simeonov, Impulsive differential equations: periodic solutions and applications, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 66, Longman Scientific, New York, 1993. · Zbl 0815.34001
[2] Bainov, D. D.; Dishliev, A. B.; Stamova, I. M.: Lipschitz quasistability of impulsive differential -- difference equations with variable impulsive perturbations. J. comput. Appl. math. 70, 267-277 (1996) · Zbl 0854.34073
[3] Ballinger, G.; Liu, X.: Permanence of population growth models with impulsive effects. Math. comput. Modelling 26, 59-72 (1997) · Zbl 1185.34014
[4] Berezansky, L.; Braverman, E.: Linearized oscillation theory for a nonlinear delay impulsive equation. J. comput. Appl. math. 161, 477-495 (2003) · Zbl 1045.34039
[5] D’onofrio, A.: Stability properties of pulse vaccination strategy in SEIR epidemic model. Math. biosci. 179, 57-72 (2002) · Zbl 0991.92025
[6] J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Applied Mathematical Sciences, vol. 42, Springer, New York, 1983. · Zbl 0515.34001
[7] Kamel, O. M.; Soliman, A. S.: On the optimization of the generalized coplanar hohmann impulsive transfer adopting energy change concept. Acta astronautica 56, 431-438 (2005)
[8] Y.A. Kuznetsov, Elements of applied bifurcation theory, Applied Mathematical Sciences, vol. 112, Springer, New York, 1995. · Zbl 0829.58029
[9] Lakmeche, A.; Arino, O.: Bifurcation of nontrival periodic solutions of impulsive differential equations arising chemotherapeutic treatment. Dynamics of continuous, discrete and impulsive system 7, 265-287 (2000) · Zbl 1011.34031
[10] Liu, X. Z.; Rohlf, K.: Impulsive control of a Lotka -- Volterra system. IMA J. Math. control inf. 15, 269-284 (1998) · Zbl 0949.93069
[11] Liu, X. N.; Chen, L. S.: Complex dynamics of Holling type $\Pi $ lotaka -- Volterra predator -- prey system with impulsive perturbations on the predator. Chaos, solitons and fractals 16, 311-320 (2003) · Zbl 1085.34529
[12] Lsksmikantham, V.; Bainov, D. D.; Simeonov, P. S.: Theory of impulsive differential equations. (1989)
[13] Lu, Z. H.; Chi, X. B.; Chen, L. S.: The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission. Math. comput. Modelling 36, 1039-1057 (2002) · Zbl 1023.92026
[14] Roberts, M. G.; Kao, R. R.: The dynamics of an infections disease in a population with birth pulses. Math. biosci. 149, 23-36 (1998) · Zbl 0928.92027
[15] Shulgin, B.; Stone, L.; Agur, Z.: Theoretical examination of pulse vaccination policy in the SIR epidemic model. Math. comput. Modelling 31, 207-215 (2000) · Zbl 1043.92527
[16] Simeonov, P. E.; Bainov, D. D.: Orbital stability of periodic solutions of autonomous systems with impulse effect. Internat. J. Systems sci. 19, 2562-2585 (1988) · Zbl 0669.34044
[17] Tang, S. Y.; Chen, L. S.: Multiple attractors in stage-structured population models with birth pulses. Bull. math. Biol. 65, 479-495 (2003)
[18] Tang, S. Y.; Chen, L. S.: Density-dependent birth rate, birth pulses and their population dynamic consequences. J. math. Biol. 44, 185-199 (2002) · Zbl 0990.92033
[19] Van Lenteren, J. C.: Integrated pest management in protected crops. Integrated pest management, 311-320 (1995)
[20] T. Yang, Impulsive Control Theory, Springer, Berlin Heidelberg, 2001, pp. 307 -- 333.