Song, Yan-Kui On \(\mathcal K\)-starcompact spaces. (English) Zbl 1134.54314 Bull. Malays. Math. Sci. Soc. (2) 30, No. 1, 59-64 (2007). Summary: A space \(X\) is \(\mathcal K\)-starcompact if for every open cover \(\mathcal U\) of \(X\), there exists a compact subset \(K\) of \(X\) such that \(St(K,{\mathcal U})=X\), where \(St(K,{\mathcal U})=\bigcup\{U\in{\mathcal U}: U\cap K\neq\emptyset\}\). In this paper, we investigate the relations between \(\mathcal K\)-starcompact spaces and other related spaces. We also study topological properties of \(\mathcal K\)-starcompact spaces. Cited in 3 Documents MSC: 54D20 Noncompact covering properties (paracompact, Lindelöf, etc.) 54B10 Product spaces in general topology 54D55 Sequential spaces Keywords:countably compact; star-compact; \(1\frac12\)-star compact PDF BibTeX XML Cite \textit{Y.-K. Song}, Bull. Malays. Math. Sci. Soc. (2) 30, No. 1, 59--64 (2007; Zbl 1134.54314) Full Text: EuDML OpenURL