×

A common fixed point theorem of compatible maps in Menger space. (English) Zbl 1134.54321

Summary: Singh and Jain proved a common fixed point theorem for six maps [B. Singh and S. Jain, J. Math. Anal. Appl. 301, No. 2, 439–448 (2005; Zbl 1068.54044)]. In this paper, a new generalization of this theorem is given. In fact, a common fixed point theorem is proved for any even number of maps.

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
47H10 Fixed-point theorems
47S50 Operator theory in probabilistic metric linear spaces

Citations:

Zbl 1068.54044
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Cho, Y. J., Fixed points in fuzzy metric spaces, J Fuzzy Math, 5, 949-962 (1997) · Zbl 0887.54003
[2] El Naschie, M. S., On the uncertainty of Cantorian geometry and two-slit experiment, Chaos, Soliton & Fractals, 9, 517-529 (1998) · Zbl 0935.81009
[3] El Naschie, M. S., On the verifications of heterotic string theory and \(&z.epsiv;^{(∞)}\) theory, Chaos, Soliton & Fractals, 11, 397-407 (2000)
[4] El Naschie, M. S., On a fuzzy kãhler-like manifold which is consistent with the two slit experiment, Int J Nonlinear Sci Numer Simul, 6, 517-529 (2005) · Zbl 0935.81009
[5] El Naschie, M. S., A review of \(E\)-infinity theory and the mass spectrum of high energy particle physics, Chaos, Soliton & Fractals, 19, 209-236 (2004) · Zbl 1071.81501
[6] George, A.; Veermani, P., On some results in fuzzy metric spaces, Fuzzy Sets Syst, 64, 395-399 (1994) · Zbl 0843.54014
[7] Junck, G., Compatible mappings and common fixed points, Int J Math Math Sci, 771-779 (1986)
[8] Junck, G.; Murphy, P. P.; Cho, Y. J., Compatible mappings of type \((A)\) and common fixed points, Math Japonica, 38, 381-390 (1993) · Zbl 0791.54059
[9] Junck, G.; Rhoades, B. E., Fixed points for set valued functions without continuity, Indian J Pure Appl Math, 29, 227-238 (1998) · Zbl 0904.54034
[10] Kramosil, O.; Michalek, J., Fuzzy metric and statistical metric spaces, Kybernetica, 11, 326-334 (1975)
[11] Menger, K., Statistical metrics, Proc Nat Acad Sci USA, 28, 535-537 (1942) · Zbl 0063.03886
[12] Mishra, S. N., Common fixed points of compatible mappings in PM-spaces, Math Japonica, 36, 283-289 (1991) · Zbl 0731.54037
[13] Mishra, S. N.; Sharma, N.; Singh, S. L., Common fixed points of maps on fuzzy metric spaces, Int J Math Math Sci, 17, 253-258 (1994) · Zbl 0798.54014
[14] Razani, A., A contraction theorem in fuzzy metric spaces, Fixed Point Theory Appl, 3, 257-265 (2005) · Zbl 1102.54005
[17] Schweizer, B.; Sklar, A., Statistical metric spaces, Pacific J Math, 10, 313-334 (1960) · Zbl 0091.29801
[18] Sehgal, V. M.; Bharucha-Reid, A. T., Fixed point of contraction mapping in PM-spaces, Math Syst Theory, 6, 97-102 (1972) · Zbl 0244.60004
[19] Sessa, S., On a week commutative condition in fixed point consideration, Publ Inst Math (Beograd), 32, 149-153 (1982)
[20] Sharma, S., Common fixed point theorem in fuzzy metric spaces, Fuzzy Sets Syst, 127, 345-352 (2002) · Zbl 0990.54029
[21] Singh, B.; Jain, S., A fixed point theorem in Menger space thought weak compatibility, J Math Anal Appl, 301, 439-448 (2005) · Zbl 1068.54044
[22] Singh, B.; Pant, B. D., Common fixed point theorems in PM-spaces and extension to uniform spaces, Hanam Math J, 6, 1-12 (1984) · Zbl 0945.54502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.