Martingale structure of Skorohod integral processes. (English) Zbl 1134.60039

The article is devoted to the investigation of the structure of the process \[ Y_t=\int _0^tu_s\,dX_s, \] where \(X\) is the standard Brownian motion and the integral is considered in the Skorokhod sense. The authors prove that \(Y\) can be approximated by the sums of products of forward and backward Ito integrals with respect to \(X.\) Also the article contains the optional sampling theorem for \(Y\) under the assumption that \(u\) has stochastic derivatives.


60H05 Stochastic integrals
60H07 Stochastic calculus of variations and the Malliavin calculus
60G15 Gaussian processes
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
Full Text: DOI arXiv


[1] Barlow, M. and Imkeller, P. (1992). On some sample path properties of Skorohod integral processes. Séminaire de Probabilités XXVI. Lecture Notes in Math. 1526 70–80. Springer, Berlin. · Zbl 0761.60047 · doi:10.1007/BFb0084311
[2] Chaleyat-Maurel, M. and Jeulin, T. (1983). Grossissement gaussien de la filtration brownienne. C. R. Acad. Sci. Paris Sé r. I Math . 296 699–702. · Zbl 0529.60045
[3] Chung, K. L. (1974). A Course in Probability Theory. Academic Press, San Diego, CA. · Zbl 0345.60003
[4] Clark, J. M. C. (1970). The representation of functionals of Brownian motion by stochastic integrals. Ann. Math. Statist . 41 1282–1295. [Correction in Ann. Math. Statist . (1971) 42 1778.] · Zbl 0213.19402 · doi:10.1214/aoms/1177696903
[5] Duc, M. N. and Nualart, D. (1990). Stochastic processes possessing a Skorohod integral representation. Stochastics Stochastics Rep. 30 47–60. · Zbl 0706.60055 · doi:10.1080/17442509008833631
[6] Jacod, J. and Protter, P. (1988). Time reversal on Lévy processes. Ann. Probab. 16 620–641. · Zbl 0646.60052 · doi:10.1214/aop/1176991776
[7] Karatzas, I. and Shreve, S. (1991). Brownian Motion and Stochastic Calculus , 2nd ed. Springer, New York. · Zbl 0734.60060
[8] Meyer, P.-A. (1976). Un cours sur les intégrales stochastiques. Séminaire de Probabilités X. Lecture Notes in Math. 511 245–400. Springer, Berlin. · Zbl 0374.60070
[9] Nualart, D. (1995). The Malliavin Calculus and Related Topics. Springer, New York. · Zbl 0837.60050
[10] Nualart, D. (1998). Analysis on Wiener space and anticipating stochastic calculus. Lectures on Probability Theory and Statistics. Lecture Notes in Math. 1690 123–227. Springer, Berlin. · Zbl 0915.60062 · doi:10.1007/BFb0092538
[11] Nualart, D. and Pardoux, E. (1988). Stochastic calculus with anticipating integrands. Probab. Theory Related Fields 78 535–581. · Zbl 0629.60061 · doi:10.1007/BF00353876
[12] Nualart, D. and Thieullen, M. (1994). Skorohod stochastic differential equations on random intervals. Stochastics Stochastics Rep. 49 149–167. · Zbl 0827.60040
[13] Ocone, D. (1984). Malliavin’s calculus and stochastic integral representations of functionals of diffusion processes. Stochastics 12 161–185. · Zbl 0542.60055 · doi:10.1080/17442508408833299
[14] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion , 3rd ed. Springer, Berlin. · Zbl 0917.60006
[15] Skorohod, A. V. (1975). On a generalization of a stochastic integral. Theory Probab. Appl. 20 219–233. · Zbl 0333.60060
[16] Tudor, C. A. (2004). Martingale type stochastic calculus for anticipating integral processes. Bernoulli 10 313–325. · Zbl 1062.60055 · doi:10.3150/bj/1082380221
[17] Wu, L. M. (1990). Un traitement unifié de la représentation des fonctionnelles de Wiener. Séminaire de Probabilités XXIV . Lecture Notes in Math. 1426 166–187. Springer, Berlin. · Zbl 0723.60064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.