×

zbMATH — the first resource for mathematics

Fuzzy data in statistics. (English) Zbl 1134.62001
Summary: The development of effective methods of data processing belongs to important challenges of modern applied mathematics and theoretical information sciences. If the natural uncertainty of the data means their vagueness, then the theory of fuzzy quantities offers relatively strong tools for their treatment. These tools differ from the statistical methods and this difference is not only justifiable but also admissible. This relatively brief paper aims to summarize the main fuzzy approaches to vague data processing, to discuss their main advantages and also their essential limitations, and to specify their place in the wide scale of information and knowledge processing methods effective for vague data.

MSC:
62-07 Data analysis (statistics) (MSC2010)
62A01 Foundations and philosophical topics in statistics
03E72 Theory of fuzzy sets, etc.
PDF BibTeX XML Cite
Full Text: Link EuDML
References:
[1] Dubois D., Prade H.: Fuzzy numbers: An overview. Analysis of Fuzzy Information (J. C. Bezdek, Vol. 2, CRC-Press, Boca Raton 1988, pp. 3-39 · Zbl 0663.94028
[2] Dubois D., Kerre E. E., Mesiar, R., Prade H.: Fuzzy interval analysis. Fundamental of Fuzzy Sets, Vol. 1, Kluwer Academic Publishers Kluwer Acad. Publ, Dodrecht 2000, pp. 483-581 · Zbl 0988.26020 · doi:10.1007/978-1-4615-4429-6_11
[3] Kacprzyk J., (eds.) M. Fedrizi: Fuzzy Regression Analysis. Omnitech Press, Physica-Verlag, Warsaw 1992
[4] Kerre E. E., Wang X.: Reasonable properties for the ordering of fuzzy quantities. Part I, Part II. Fuzzy Sets and Systems 118 (2001), 375-385, 387-405 · Zbl 0971.03055 · doi:10.1016/S0165-0114(99)00063-9
[5] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000 · Zbl 1087.20041 · doi:10.1017/S1446788700008065
[6] Calvo T., Mayor, G., (eds.) R. Mesiar: Aggregation Operators. Physica-Verlag, Heidelberg 2002 · Zbl 0983.00020
[7] Mareš M.: Computation Over Fuzzy quantities. CRC-Press, Boca Raton 1994 · Zbl 0859.94035
[8] Mareš M.: Weak arithmetics of fuzzy numbers. Fuzzy Sets and Systems 91 (1997), 2, 143-154 · Zbl 0919.04009 · doi:10.1016/S0165-0114(97)00136-X
[9] Mareš M., Mesiar R.: Verbally generated fuzzy quantities and their aggregation. Analysis of Fuzzy Information (J. C. Bezdek, Vol. 2, CRC-Press, Boca Raton 1988, pp. 291-3352
[10] Mareš M., Mesiar R.: Dual meaning of verbal quantities. Kybernetika 38 (2002), 6, 709-716 · Zbl 1265.68275 · www.kybernetika.cz
[11] Chien, Tran Quoc: Medium distances of probability fuzzy-points and an application to linear programming. Kybernetika 25 (1989), 6, 494-504 · Zbl 0715.90074 · www.kybernetika.cz · eudml:27822
[12] Zadeh L. A.: Fuzzy sets. Inform. and Control 8 (1965), 3, 338-353 · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.