zbMATH — the first resource for mathematics

Robust estimations in classical regression models versus robust estimations in fuzzy regression models. (English) Zbl 1134.62012
Summary: Two robust estimators of the unknown fuzzy parameters in a fuzzy regression model are presented and the relationships between these robust estimators in the classical regression model and in the fuzzy regression model are investigated.

62F10 Point estimation
62J12 Generalized linear models (logistic models)
62F35 Robustness and adaptive procedures (parametric inference)
62J99 Linear inference, regression
Full Text: Link EuDML
[1] Bárdossy A., Duckstein L.: Fuzzy Rule? Based Modeling with Applications to Geophysical, Biological and Engrg. Systems. CRC Press, Boca Raton 1995 · Zbl 0857.92001
[2] Huber P. J.: Robust estimation of a location parameter. Ann. Math. Statist. 35 (1964), 73-101 · Zbl 0136.39805 · doi:10.1214/aoms/1177703732
[3] Huber P. J.: Robust Statistics. Wiley, New York 1981 · Zbl 0536.62025
[4] Klir G. J., Yuan B.: Fuzzy Sets and Fuzzy Logic - Theory and Applications. Prentice Hall PTR, Upper Saddle River, NJ 1995 · Zbl 0915.03001
[5] Rousseeuw P. J.: Least median of squares regression. J. Amer. Statist. Assoc. 79 (1984), 871-880 · Zbl 0551.62049
[6] Šabo M.: On T-reverse of T-norms. Tatra Mt. Math. Pub. 12 (1997), 35-40 · Zbl 0954.03060
[7] Varga Š.: Robust estimations in statistics. PRASTAN 1998, pp. 86-114
[8] Varga Š.: Robust estimations in fuzzy linear regression models. Quo Vadis Computational Intelligence, Physica-Verlag, Heidelberg 2000, pp. 239-246
[9] Varga Š., Šabo M.: Linear regression with fuzzy variables. The State of the Art in Computational Intelligence. Physica-Verlag, Heidelberg 2000, pp. 99-103 · Zbl 0982.62066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.