Multivariate generalized Pareto distributions. (English) Zbl 1134.62028

Summary: Statistical inference for extremes has been a subject of intensive research over the past couple of decades. One approach is based on modelling exceedances of a random variable over a high threshold with the generalized Pareto (GP) distribution. This has proved to be an important way to apply extreme value theory in practice and is widely used.
We introduce a multivariate analogue of the GP distribution and show that it is characterized by each of following two properties: first, exceedances asymptotically have a multivariate GP distribution if and only if maxima asymptotically are extreme value distributed; and second, the multivariate GP distribution is the only one which is preserved under change of exceedance levels. We also discuss a bivariate example and lower-dimensional marginal distributions.


62H05 Characterization and structure theory for multivariate probability distributions; copulas
62G32 Statistics of extreme values; tail inference


Full Text: DOI


[1] Arnold, B.C. (1983) Pareto Distributions. Fairland, MD: International Co-operative Publishing House. · Zbl 1169.62307
[2] Balkema, A.A. and de Haan, L. (1974) Residual life time at high age. Ann. Probab., 2, 792-804. · Zbl 0295.60014
[3] Barnett, V. (1976) The ordering of multivariate data (with discussion). J. Roy. Statist. Soc. Ser A, 139, 318-354. JSTOR:
[4] Beirlant, J., Goetgebeur, Y., Segers, J. and Teugels, J. (2004) Statistics of Extremes: Theory and Applications. Chichester: Wiley. · Zbl 1070.62036
[5] Coles, S.G. (2001) An Introduction to Statistical Modeling of Extreme Values. London: Springer- Verlag. · Zbl 0980.62043
[6] Coles, S.G. and Tawn, J.A. (1991) Modelling multivariate extreme events. J. Roy. Statist. Soc. Ser. B, 53, 377-392. JSTOR: · Zbl 0800.60020
[7] Davison, A.C. and Smith, R.L. (1990) Models for exceedances over high thresholds. J. Roy. Statist. Soc. Ser. B, 52, 393-442. JSTOR: · Zbl 0706.62039
[8] Embrechts, P., Klüppelberg C. and Mikosch, T. (1997) Modelling Extremal Events for Finance and Insurance. Berlin: Springer-Verlag. · Zbl 0873.62116
[9] Falk, M. and Reiss, R.D. (2001) Estimation of canonical dependence parameters in a class of bivariate peaks-over-threshold models. Statist. Probab. Lett., 52, 233-242. · Zbl 0981.62018
[10] Falk, M. and Reiss, R.D. (2002) A characterization of the rate of convergence in bivariate extreme value models. Statist. Probab. Lett., 59, 341-351. · Zbl 1017.62046
[11] Falk, M. and Reiss, R.D. (2003a) Efficient estimation of the canonical dependence function. Extremes, 6, 61-82. · Zbl 1053.62062
[12] Falk, M. and Reiss, R.D. (2003b) Efficient estimators and LAN in canonical bivariate POT models. J. Multivariate Anal., 84, 190-207. · Zbl 1041.62042
[13] Falk, M. and Reiss, R.D. (2005) On the distribution of Pickands coordinates in bivariate EV and GP models. J. Multivariate Anal., 93, 267-295. · Zbl 1071.60036
[14] Fougères, A.-L. (2004) Multivariate extremes. In B. Finkenstädt and H. Rootzén (eds), Extreme Values in Finance, Telecommunications, and the Environment. Boca Raton, FL: Chapman & Hall/CRC.
[15] Joe, H., Smith, R.L. and Weissman, I. (1992) Bivariate threshold methods for extremes. J. R. Statist. Soc. Ser. B, 54, 171-183. JSTOR: · Zbl 0775.62083
[16] Kotz, S. and Nadarajah, S. (2000) Extreme Value Distributions: Theory and Applications. London: Imperial College Press. · Zbl 0960.62051
[17] Kowaka, M. (1994). An Introduction to Life Prediction of Plant Materials. Application of Extreme Value Statistical Methods for Corrosion Analysis. New York: Allerton Press.
[18] Leadbetter, M.R., Lindgren, G. and Rootzén, H. (1983) Extremes and Related Properties of Random Sequences and Processes. Berlin: Springer-Verlag. · Zbl 0518.60021
[19] Ledford, A.W. and Tawn, J.A. (1996) Statistics for near independence in multivariate extreme values. Biometrika, 83, 169-187. JSTOR: · Zbl 0865.62040
[20] Pickands III, J. (1975) Statistical inference using extreme order statistics. Ann. Statist., 3, 119-131. · Zbl 0312.62038
[21] Pickands III, J. (1981) Multivariate extreme value distributions. In Bulletin of the International Statistical Institute: Proceedings of the 43rd Session (Buenos Aires), Book 2, pp. 857-878. Voorburg, Netherlands: ISI. · Zbl 0518.62045
[22] Reiss, R. and Thomas, M. (2005) Statistical Analysis of Extreme Values (for Insurance, Finance, Hydrology and Other Fields). 3rd rev. edn. Basel: Birkhäuser.
[23] Resnick, S.I. (1987) Extreme Values, Regular Variation and Point Processes. Berlin: Springer-Verlag. · Zbl 0633.60001
[24] Smith, R.L. (1985) Statistics of extreme values. In Bulletin of the International Statistical Institute: Proceedings of the 45th Session (Amsterdam), Book 4, Paper 26.1, pp. 1-17. Voorburg, Netherlands: ISI. · Zbl 0651.62013
[25] Smith, R.L. (1987) Estimating tails of probability distributions. Ann. Statist., 15, 1174-1207. · Zbl 0642.62022
[26] Smith, R.L., Tawn, J.A. and Yuen, H.K. (1990) Statistics of multivariate extremes. Int. Statist. Inst. Rev., 58, 47-58. · Zbl 0715.62095
[27] Smith, R.L., Tawn, J.A. and Coles, S.G. (1997) Markov chain models for threshold exceedances. Biometrika, 84, 249-268. JSTOR: · Zbl 0891.60047
[28] Tajvidi, N. (1996) Multivariate generalized Pareto distributions. In Characterisation and Some Statistical Aspects of Univariate and Multivariate Generalized Pareto Distributions, PhD thesis, Department of Mathematics, Chalmers, Göteborg.
[29] Tawn, J.A. (1988) Bivariate extreme value theory: Models and estimation. Biometrika, 75, 397-415. JSTOR: · Zbl 0653.62045
[30] Tawn, J.A. (1990) Modelling multivariate extreme value distributions. Biometrika, 77, 245-253. · Zbl 0716.62051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.