zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Partial inverse regression. (English) Zbl 1134.62045
Summary: In regression with a vector of quantitative predictors, sufficient dimension reduction methods can effectively reduce the predictor dimension, while preserving full regression information and assuming no parametric model. However, all current reduction methods require the sample size $n$ to be greater than the number of predictors $p$. It is well known that partial least squares can deal with problems with $n<p$. We first establish a link between partial least squares and sufficient dimension reduction. Motivated by this link, we then propose a new dimension reduction method, entitled partial inverse regression. We show that its sample estimator is consistent, and that its performance is similar to or superior to partial least squares when $n<p$, especially when the regression model is nonlinear or heteroscedastic. An example involving the spectroscopy analysis of biscuit dough is also given.

62J02General nonlinear regression
62G08Nonparametric regression
65C60Computational problems in statistics
Full Text: DOI