zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Convergence and comparison theorems for double splittings of matrices. (English) Zbl 1134.65341
Summary: Some convergence theorems for the double splitting of a monotone matrix or a Hermitian positive definite matrix are presented. Two comparison theorems for two double splittings of a monotone matrix are obtained. Meanwhile, we establish a new sufficient condition for convergence of the Gauss-Seidel double successive overrelaxation method for an $H$-matrix.

65F10Iterative methods for linear systems
Full Text: DOI
[1] Woźnicki, Z. I.: Estimation of the optimum relaxation factors in partial factorization iterative methods. SIAM J. Matrix anal. Appl. 14, 59-73 (1993) · Zbl 0767.65025
[2] Varga, R. S.: Matrix iterative analysis. (1962)
[3] Climent, J. J.; Perea, C.: Convergence and comparison theorems for multisplittings. Numer. linear algebra appl. 6, 93-107 (1999) · Zbl 0982.65033
[4] Woźnicki, Z. I.: Basic comparison theorems for weak and weaker matrix splittings. Electron. J. Linear algebra 8, 53-59 (2001) · Zbl 0981.65041
[5] Song, Y. Z.: Comparison theorems for splittings of matrices. Numer. math. 92, 563-591 (2002) · Zbl 1012.65028
[6] Woźnicki, Z. I.: Nonnegative splitting theory. Japan J. Industr. appl. Math. (1994) · Zbl 0805.65033
[7] Nabben, R.: A note on comparison theorems for splittings and multisplittings of Hermitian positive definite matrices. Linear algebra appl. 233, 67-80 (1996) · Zbl 0841.65019
[8] Climent, J. J.; Perea, C.: Convergence and comparison theorems for a generalized alternate iterative method. Appl. math. Comput. 143, 1-14 (2003) · Zbl 1040.65029
[9] Benzi, M.; Szyld, D. B.: Existence and uniqueness of splittings for stationary iterative methods with applications to alternating methods. Numer. math. 76, 309-321 (1997) · Zbl 0905.65048
[10] Wang, C. L.; Huang, T. Z.: New convergence results for alternating methods. J. comput. Appl. math. 135, 325-333 (2001) · Zbl 1002.65038
[11] Wang, C. L.; Zhao, J. H.: Further results on regular splittings and multisplittings. Internat. J. Comput. math. 82, 421-431 (2005) · Zbl 1086.65033
[12] Berman, A.; Plemmons, R. J.: Nonnegative matrices in the mathematical sciences. (1979) · Zbl 0484.15016
[13] Golub, G. H.; Varga, R. S.: Chebyshev semi-iterative methods, successive overrrelaxation iterative methods, and second order Richardson iterative methods, I. Numer. math. 3, 147-168 (1961) · Zbl 0099.10903
[14] S.Q. Shen and T.Z. Huang, Convergence of the Jacobi and Gauss-Seidel double SOR methods for H-matrices, Appl. Numer. Math., (submitted).
[15] Cvetković, L. J.: Two-sweep iterative methods. Nonlinear analysis 30, 25-30 (1997) · Zbl 0889.65025